Relationship between Oxygen Extraction Ratio and Prognosis in Septic Shock Patients During Early Resuscitation
-
摘要:目的 评估复苏早期氧摄取率(Oxygen extraction ratio, ERO2)对脓毒症休克患者ICU预后的影响。方法 回顾性纳入2016年1月—2021年7月北京协和医院重症医学科脓毒症休克患者,并根据ICU预后将其分为生存组和死亡组。收集患者基线临床资料及复苏后6 h氧代谢相关指标,包括氧输送(Oxygen delivery, DO2)、氧消耗(Oxygen consumption, VO2)、ERO2、乳酸(lactate, Lac)。采用多因素Logistic回归分析脓毒症休克患者ICU死亡的危险因素,并采用受试者工作特征(receiver operating characteristic, ROC)曲线评估各指标对脓毒症休克患者ICU死亡的预测价值。结果 共入选符合纳入与排除标准的脓毒症休克患者73例,其中死亡组21例,生存组52例。两组急性生理学和慢性健康状况Ⅱ评分、序贯器官衰竭估计评分差异具有统计学意义(P均<0.05)。相较于生存组,死亡组复苏后6 h Lac [5.6(4.2, 10.0)mmol/L比3.4(2.1, 6.9)mmol/L, P=0.009]、VO2[(165±95) mL/(min·m2) 比(106±58)mL/(min·m2), P=0.012]、ERO2[(56.56±19.48)%比(33.71±13.24)%, P=0.000]均升高,两组DO2无显著差异[266(214, 384)mL/(min·m2)比300(250, 396) mL/(min·m2), P=0.159]。多因素Logistic回归分析结果显示,ERO2是脓毒症休克患者ICU死亡的独立危险因素(OR=1.126,95% CI:1.053~1.203,P=0.000)。ROC曲线显示,ERO2预测脓毒症休克患者ICU死亡的曲线下面积(area under the curve, AUC)为0.833,最佳临界值为45.93%,灵敏度为76.19%,特异度为94.23%,其预测效能优于急性生理学和慢性健康状况Ⅱ评分(AUC: 0.704)、序贯器官衰竭估计评分(AUC: 0.778)和Lac(AUC: 0.668)。结论 复苏早期ERO2升高可增加脓毒症休克患者ICU死亡风险,具有良好的预后预测价值。Abstract:Objective To investigate the relationship between Oxygen extraction ratio(ERO2) and prognosis of septic shock patients in the early stage of resuscitation.Methods The data of the patients with septic shock admitted to the department of Critical Care Medicine of Peking Union Medical College Hospital from January 2016 to July 2021 were retrospectively collected. The patients were divided into the survival group and the death group according to the prognosis of the ICU. The baseline data, and Oxygen metabolism indexes including Oxygen delivery (DO2), Oxygen consumption(VO2), ERO2 and lactate(Lac) of the two groups were collected. Risk factors for ICU death in patients with septic shock were analyzed using multifactorial Logistic regression, and the predictive value of each indicator for ICU death in patients with septic shock was assessed using receiver operating characteristic (ROC) curves.Results A total of 73 patients with septic shock who met the inclusion and exclusion criteria were enrolled, including 21 cases in the death group and 52 cases in the survival group. The differences in acute physiology and chronic health evaluationⅡ(APACHEⅡ) scores and sequential organ failure assessment (SOFA) scores between the two groups were statistically significant (all P < 0.05). Compared with the survival group, 6 h after resuscitation in the death group, Lac [5.6(4.2, 10.0)mmol/L vs. 3.4(2.1, 6.9)mmol/L, P=0.009], VO2[(165±95) mL/(min·m2) vs. (106±58)mL/(min·m2), P=0.012], ERO2[(56.56±19.48)% vs.(33.71±13.24)%, P=0.000] were elevated, and there was no significant difference in DO2 between the two groups[266 (214, 384) mL/(min·m2) vs. 300 (250, 396)mL/(min·m2), P=0.159]. The results of multifactorial Logistic regression analysis showed that ERO2 was an independent risk factor for ICU death in patients with septic shock (OR=1.126, 95% CI: 1.053-1.203, P=0.000). The ROC curve showed that the area under the curve (AUC) of ERO2 for predicting ICU death in septic shock patients was 0.833, with an optimal threshold of 45.93%, sensitivity of 76.19%, specificity of 94.23%, and its predictive efficacy was superior to that of the APACHEⅡ scores(AUC: 0.704), SOFA score(AUC: 0.778), and Lac(AUC: 0.668).Conclusion ERO2 in the early stage of septic shock resuscitation is an independent risk factor for ICU prognosis, which has a good predictive value for the prognosis of septic shock.
-
Keywords:
- Oxygen extraction ratio /
- septic shock /
- prognosis /
- Oxygen metabolism
-
作者贡献:周高生负责研究设计并撰写论文初稿;刘晶晶负责协助数据处理及分析;张青负责数据提取;王小亭、张宏民提出修改意见;刘大为负责论文修订。利益冲突:所有作者均声明不存在利益冲突
-
表 1 两组患者临床资料比较
指标 生存组(n=52) 死亡组(n=21) P值 年龄[M(P25, P75),岁] 65(55, 72) 74(61, 80) 0.060 APACHE Ⅱ评分[M(P25, P75),分] 21(17, 26) 26(21, 33) 0.007 SOFA评分[M(P25, P75),分] 6(3, 10) 12(9, 15) 0.000 男性[n(%)] 34(65.4) 11(52.4) 0.301 BSA(x±s, m2) 1.71±0.19 1.71±0.19 0.984 BMI(x±s, kg/m2) 23±4 25±4 0.116 感染部位[n(%)] 肺 36(69.2) 14(66.7) 0.831 腹腔 12(23.1) 4(19.0) 0.949 血流 1(1.9) 3(14.3) 0.125 心内膜 1(1.9) 0(0) 0.637 软组织 2(3.8) 0(0) 0.905 CRRT[n(%)] 27(51.9) 13(61.9) 0.438 机械通气[n(%)] 52(100) 21(100) >0.999 机械通气时间[M(P25, P75),h] 137(74, 248) 166(105, 410) 0.126 CRRT时间[M(P25, P75),h] 79(30, 158) 111(83, 184) 0.279 ICU住院时间[M(P25, P75),d] 10(5, 21) 11(7, 21) 0.591 APACHEⅡ:急性生理学和慢性健康状况Ⅱ;SOFA:序贯器官衰竭估计;BSA:体表面积;BMI:体质量指数;CRRT:连续性肾脏替代治疗 表 2 两组患者复苏后6 h氧代谢指标比较
组别 Lac
[M(P25, P75),mmol/L]DO2
[M(P25, P75),mL/(min·m2)]VO2
[x±s, mL/(min·m2)]ERO2
(x±s, %)生存组(n=52) 3.4(2.1, 6.9) 300(250, 396) 106±58 33.71±13.24 死亡组(n=21) 5.6(4.2, 10.0) 266(214, 384) 165±95 56.56±19.48 P值 0.009 0.159 0.012 0.000 Lac:乳酸;DO2:氧输送;VO2:氧消耗;ERO2:氧摄取率 表 3 脓毒症休克患者ICU死亡危险因素的单因素Logistic回归分析
指标 β值 SE值 Wald值 P值 OR(95% CI) 年龄 0.026 0.018 2.017 0.156 1.027(0.990~1.064) APACHE Ⅱ评分 0.106 0.040 6.879 0.009 1.111(1.027~1.203) SOFA评分 0.218 0.063 12.021 0.001 1.244(1.100~1.407) Lac 0.161 0.080 4.048 0.044 1.175(1.004~1.375) ERO2 0.119 0.028 18.581 0.000 1.127(1.067~1.190) APACHE Ⅱ、SOFA:同表 1;Lac、ERO2:同表 2 表 4 脓毒症休克患者ICU死亡危险因素的多因素Logistic回归分析
自变量 β值 SE值 Wald值 P值 OR(95% CI) 年龄 0.002 0.031 0.006 0.941 1.002(0.943~1.065) APACHE Ⅱ评分 0.140 0.070 4.030 0.045 1.151(1.003~1.319) SOFA评分 0.097 0.107 0.826 0.363 1.102(0.894~1.357) Lac 0.302 0.144 4.419 0.036 1.353(1.021~1.793) ERO2 0.119 0.034 12.144 0.000 1.126(1.053~1.203) APACHE Ⅱ、SOFA:同表 1;Lac、ERO2:同表 2 表 5 ERO2、Lac等指标对脓毒症休克患者ICU死亡的预测价值
-
[1] Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock(Sepsis-3)[J]. JAMA, 2016, 315: 801-810. DOI: 10.1001/jama.2016.0287
[2] Friedman G, De Backer D, Shahla M, et al. Oxygen supply dependency can characterize septic shock[J]. Intensive Care Med, 1998, 24: 118-123. DOI: 10.1007/s001340050531
[3] Reinhart K, Hannemann L, Kuss B. Optimal oxygen delivery in critically ill patients[J]. Intensive Care Med, 1990, 16 Suppl 2: S149-S155.
[4] Rackow EC, Astiz ME, Weil MH. Cellular oxygen metabolism during sepsis and shock. The relationship of oxygen consumption to oxygen delivery[J]. JAMA, 1988, 259: 1989-1993. DOI: 10.1001/jama.1988.03720130053029
[5] Tuchschmidt J, Oblitas D, Fried JC. Oxygen consumption in sepsis and septic shock[J]. Crit Care Med, 1991, 19: 664-671. DOI: 10.1097/00003246-199105000-00013
[6] Ospina-Tascón GA, García Marin AF, Echeverri GJ, et al. Effects of dobutamine on intestinal microvascular blood flow heterogeneity and O2 extraction during septic shock[J]. J Appl Physiol(1985), 2017, 122: 1406-1417. DOI: 10.1152/japplphysiol.00886.2016
[7] Mallat J, Rahman N, Hamed F, et al. Pathophysiology, mechanisms, and managements of tissue hypoxia[J]. Anaesth Crit Care Pain Med, 2022, 41: 101087. DOI: 10.1016/j.accpm.2022.101087
[8] 刘大为, 王小亭, 张宏民, 等. 重症血流动力学治疗: 北京共识[J]. 中华内科杂志, 2015, 54: 248-271. https://xuewen.cnki.net/CCND-BJRB202310230040.html [9] Ince C, Guerci P. Why and when the microcirculation becomes disassociated from the macrocirculation[J]. Intensive Care Med, 2016, 42: 1645-1646. DOI: 10.1007/s00134-016-4494-1
[10] 郭张妍, 田家豪, 王敏, 等. 氧代谢指标与严重脓毒症患儿的预后相关性研究[J]. 中国小儿急救医学, 2021, 28: 1077-1081. [11] Vieira da Silva Pellegrina D, Severino P, Vieira Barbeiro H, et al. Septic Shock in Advanced Age: Transcriptome Analysis Reveals Altered Molecular Signatures in Neutrophil Granulocytes[J]. PLoS One, 2015, 10: e0128341. DOI: 10.1371/journal.pone.0128341
[12] Squara P. Matching total body oxygen consumption and delivery: a crucial objective[J]. Intensive Care Med, 2004, 30: 2170-2179. DOI: 10.1007/s00134-004-2449-4
[13] Rivers EP, Yataco AC, Jaehne AK, et al. Oxygen extraction and perfusion markers in severe sepsis and septic shock: diagnostic, therapeutic and outcome implications[J]. Curr Opin Crit Care, 2015, 21: 381-738. DOI: 10.1097/MCC.0000000000000241
[14] Klijn E, Den Uil CA, Bakker J, et al. The heterogeneity of the microcirculation in critical illness[J]. Clin Chest Med, 2008, 29: 643-654, viii. DOI: 10.1016/j.ccm.2008.06.008
[15] Leverve XM. Mitochondrial function and substrate availa-bility[J]. Crit Care Med, 2007, 35: S454-S460. DOI: 10.1097/01.CCM.0000278044.19217.73
[16] Garcia-Alvarez M, Marik P, Bellomo R. Sepsis-associated hyperlactatemia[J]. Crit Care, 2014, 18: 503. DOI: 10.1186/s13054-014-0503-3
[17] Schumacker PT, Cain SM. The concept of a critical oxygen delivery[J]. Intensive Care Med, 1987, 13: 223-229. DOI: 10.1007/BF00265110
[18] Jones CJ, Kuo L, Davis MJ, et al. Regulation of coronary blood flow: coordination of heterogeneous control mechani-sms in vascular microdomains[J]. Cardiovasc Res, 1995, 29: 585-596. DOI: 10.1016/S0008-6363(96)88626-3
[19] Dhabangi A, Ainomugisha B, Cserti-Gazdewich C, et al. Effect of Transfusion of Red Blood Cells With Longer vs Shorter Storage Duration on Elevated Blood Lactate Levels in Children With Severe Anemia: The TOTAL Randomized Clinical Trial[J]. JAMA, 2015, 314: 2514-2123. DOI: 10.1001/jama.2015.13977
[20] Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock[J]. N Engl J Med, 2001, 345: 1368-1377. DOI: 10.1056/NEJMoa010307
[21] 杜微, 王小亭, 刘大为. 休克复苏: 血流至上, 氧流至优[J]. 协和医学杂志, 2022, 13: 915-920. DOI: 10.12290/xhyxzz.2022-0441