-
摘要: 近年来,免疫治疗成为实体肿瘤治疗的新方法,大量免疫制剂被开发并应用于临床,其中以免疫检查点抑制剂(immune checkpoint inhibitors,ICIs)应用最为广泛,为肿瘤治疗开启了新时代。而以细胞毒性T淋巴细胞相关蛋白4(cytotoxic T-lymphocyte-associated protein 4, CTLA-4)为代表的ICIs类药物丰富了肿瘤免疫治疗方法,开启了双免疫疗法的全新治疗模式。本文就CTLA-4在晚期实体肿瘤治疗中的临床应用进行综述,以期为肿瘤免疫治疗提供参考。
-
关键词:
- 实体肿瘤 /
- 免疫治疗 /
- 免疫检查点抑制剂 /
- 细胞毒性T淋巴细胞相关蛋白4
Abstract: In recent years, immunotherapy has become a new method for solid tumor treatment, and a large number of immune preparations have been developed and applied in clinical practice. Among them, immune checkpoint inhibitors (ICIs) are widely used, ushering in a new era for tumor treatment. In particular, cytotoxic T-lymphocyte-associated protein 4(CTLA-4), as a representative drug, enriches tumor immunotherapy methods and opens up a new treatment mode of dual immunotherapy. This article reviews the clinical application progress of CTLA-4 in the treatment of advanced solid tumors, with the hope of providing reference for immunotherapy of tumors.-
Keywords:
- solid tumor /
- immunotherapy /
- immune checkpoint inhibitor /
- CTLA-4
-
作者贡献:李涛、郑轩和张帆负责论文撰写;张侃、杨文雨、刘鹿负责文献查阅及资料收集;胡毅负责组织选题及论文审校。利益冲突:所有作者均声明不存在利益冲突
-
表 1 CheckMate-227临床试验结果
方案 “O+Y”联合治疗 Nivolumab单药 Nivolumab+化疗 含铂双药化疗 PD-L1≥50%(n=611) mOS(月) 21.2 18.1 - 14.0 DOR(月) 31.8 16.8 - 5.8 HR 0.66(95% CI: 0.52~0.84) 0.64(95% CI: 0.51~0.81) - - PD-L1≥1%(n=1189) 例数(n) 396 396 - 397 mOS(月) 17.1 15.7 - 14.9 总生存率(%) 29 - - 18 中位DOR(月) 23.2 15.5 - 6.7 HR 0.76(95% CI: 0.65~0.90) - - - PD-L1<1%(n=550) 例数(n) 187 - 177 186 mOS(月) 17.2 - 15.2 12.2 总生存率(%) 24 - - 10 DOR(月) 18.0 - 8.3 4.8 HR 0.64(95% CI: 0.51~0.81) - - - -:未涉及;mOS: 中位总生存期;DOR: 持续缓解时间;HR: 风险比;PD-L1:程序性死亡[蛋白]配体-1 表 2 CTLA-4及“O+Y”联合治疗获美国FDA/我国NMPA批准的适应证
序号 临床试验 获批时间 适应证 治疗方案 1 MDX010-20 2011年5月 成人或儿童(≥12岁)不可切除或转移性黑色素瘤 Ipilimumab 3 mg/kg,每3周×44次+ gp100 2 EORTC 18071/CA184-029 2015年10月 病理显示累及局部淋巴结超过1 mm且包括淋巴结在内完全切除的皮肤黑色素瘤术后辅助治疗 Ipilimumab 10 mg/kg,每3周×44次→每12周×3年 3 CheckMate-067 2016年1月 此前未经治疗的不可切除或转移性黑色素瘤 Nivolumab 1 mg/kg+Ipilimumab 3 mg/kg,每3周×44次→Nivolumab 240/480 mg,每2或4周 4 CheckMate-214 2018年4月 此前未经治疗的中高危不可切除晚期肾细胞癌 Nivolumab 3 mg/kg+Ipilimumab 1 mg/kg,每3周×44次→Nivolumab 240/480 mg,每2或4周 5 CheckMate-142 2018年7月 经氟尿嘧啶类、奥沙利铂和伊立替康治疗后进展的MSI-H/dMMR转移性mCRC Nivolumab 3 mg/kg+Ipilimumab 1 mg/kg,每3周×44次→Nivolumab 240/480 mg,每2或4周 6 CheckMate-040 2020年3月 既往接受过索拉非尼治疗的不可切除HCC Nivolumab 1 mg/kg+Ipilimumab 3 mg/kg,每3周×44次→Nivolumab 240/480 mg,每2或4周 7 CheckMate-227 2020年5月 一线治疗PD-L1≥1%,无EGFR/ALK突变转移性NSCLC Nivolumab 3 mg/kg,每2周+Ipilimumab 1 mg/kg,每6周 8 CheckMate-9LA 2020年5月 一线无EGFR/ALK突变的转移性NSCLC Nivolumab 360 mg,每3周+Ipilimumab 1 mg/kg,每6周+含铂双药化疗,每3周×42次→Nivolumab 360 mg,每3周+Ipilimumab 1 mg/kg,每6周 9 CheckMate-743 2020年10月 未经治疗且不可切除MPM Nivolumab 3 mg/kg+Ipilimumab 1 mg/kg,每3周 10 - 2022年6月 既往含铂化疗治疗失败的复发或转移性宫颈癌 Candonilimab 6 mg/kg,每2周(NMPA附条件批准) 11 HIMALAYA 2022年10月 不可切除HCC Tremelimumab 300 mg,1次+Durvalizumab 1500 mg,每4周(STRIDE法) -:未提及;MSI-H:微卫星高度不稳定;dMMR:错配修复缺陷;mCRC:转移性结直肠癌;HCC:肝细胞癌;NSCLC:非小细胞肺癌;MPM:恶性胸膜间皮瘤; FDA: 食品药品监督管理局;NMPA: 国家药品监督管理局;CTLA-4:细胞毒性T淋巴细胞相关蛋白4;PD-L1:同表 1 表 3 CheckMate系列研究中联合治疗剂量
临床试验 起始剂量 维持剂量 Nivolumab Ipilimumab Nivolumab Ipilimumab CheckMate-067/649/040 1 mg/kg, 每3周 3 mg/kg, 每3周 240 mg, 每2周/480 mg, 每4周 - CheckMate-142/214/040 3 mg/kg, 每3周 1 mg/kg, 每3周 240 mg, 每2周/480mg, 每4周 - CheckMate-227/9LA/142/040/743 3 mg/kg, 每2周 1 mg/kg, 每6周 3 mg/kg, 每2周 1 mg/kg, 每6周 -:未使用 表 4 CTLA-4单药或联合治疗AE发生率[%(n/N)]
药物(剂量) 皮疹 肺炎 肾炎 总体 2级 3~5级 激素治疗 Ipilimumab(3 mg/kg) 15(76/511) 12(61/511) 2.5(13/511) 43(33/76) - - Ipilimumab(10 mg/kg) 25(118/471) 21(99/471) 4(19/471) 70(83/118) - - Nivolumab+Ipilimumab(1 mg/kg) 16(108/666) 4.2(28/666) 3.5(23/666) - 3.9(26/666) Nivolumab+ Ipilimumab(3 mg/kg) 35(17/49) - - 12(6/49) 10(5/49) - 药物(剂量) 内分泌系统 总体 垂体炎 肾上腺皮质功能不全 甲状腺功能亢进 甲状腺功能减退 甲状腺炎 糖尿病 Ipilimumab(3 mg/kg) 4
(21/511)- - - - - - Ipilimumab(10 mg/kg) 28
(132/471)- - - - - - Nivolumab+Ipilimumab(1 mg/kg) 4.4
(29/666)7
(48/666)12
(80/666)18
(122/666)3.3
(22/666)2.3
(15/666)- Nivolumab+ Ipilimumab(3 mg/kg) - - 18
(9/49)10
(5/49)22
(11/49)- - -:未涉及;CTLA-4:同表 2;AE: 不良事件 -
[1] Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144: 646-674. DOI: 10.1016/j.cell.2011.02.013
[2] Hanahan D. Hallmarks of Cancer: New Dimensions[J]. Cancer Discov, 2022, 12: 31-46. DOI: 10.1158/2159-8290.CD-21-1059
[3] Ephraim R, Fraser S, Nurgali K, et al. Checkpoint Markers and Tumor Microenvironment: What Do We Know?[J]. Cancers (Basel), 2022, 14: 3788. DOI: 10.3390/cancers14153788
[4] Maruhashi T, Sugiura D, Okazaki IM, et al. LAG-3: from molecular functions to clinical applications[J]. J Immunother Cancer, 2020, 8: e001014. DOI: 10.1136/jitc-2020-001014
[5] Freed-Pastor WA, Lambert LJ, Ely ZA, et al. The CD155/TIGIT axis promotes and maintains immune evasion in neoantigen-expressing pancreatic cancer[J]. Cancer Cell, 2021, 39: 1342-1360. DOI: 10.1016/j.ccell.2021.07.007
[6] Azuma M, Ito D, Yagita H, et al. B70 antigen is a second ligand for CTLA-4 and CD28[J]. Nature, 1993, 366: 76-79. DOI: 10.1038/366076a0
[7] Krummel MF, Allison JP. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells[J]. J Exp Med, 1996, 183: 2533-2540. DOI: 10.1084/jem.183.6.2533
[8] Parry RV, Chemnitz JM, Frauwirth KA, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms[J]. Mol Cell Biol, 2005, 25: 9543-9553. DOI: 10.1128/MCB.25.21.9543-9553.2005
[9] Ribas A. Releasing the Brakes on Cancer Immunotherapy[J]. N Engl J Med, 2015, 373: 1490-1492. DOI: 10.1056/NEJMp1510079
[10] Takahashi T, Tagami T, Yamazaki S, et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4[J]. J Exp Med, 2000, 192: 303-310. DOI: 10.1084/jem.192.2.303
[11] Qureshi OS, Zheng Y, Nakamura K, et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4[J]. Science, 2011, 332: 600-603. DOI: 10.1126/science.1202947
[12] Wei SC, Duffy CR, Allison JP. Fundamental Mechanisms of Immune Checkpoint Blockade Therapy[J]. Cancer Discov, 2018, 8: 1069-1086. DOI: 10.1158/2159-8290.CD-18-0367
[13] Hou TZ, Qureshi OS, Wang CJ, et al. A transendocytosis model of CTLA-4 function predicts its suppressive behavior on regulatory T cells[J]. J Immunol, 2015, 194: 2148-2159. http://pubmed.ncbi.nlm.nih.gov/25632005/
[14] Pedicord VA, Montalvo W, Leiner IM, et al. Single dose of anti-CTLA-4 enhances CD8+ T-cell memory formation, function, and maintenance[J]. Proc Natl Acad Sci USA, 2011, 108: 266-271. DOI: 10.1073/pnas.1016791108
[15] Weber JS, Hamid O, Chasalow SD, et al. Ipilimumab increases activated T cells and enhances humoral immunity in patients with advanced melanoma[J]. J Immunother, 2012, 35: 89-97. DOI: 10.1097/CJI.0b013e31823aa41c
[16] Selby MJ, Engelhardt JJ, Quigley M, et al. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells[J]. Cancer Immunol Res, 2013, 1: 32-42. DOI: 10.1158/2326-6066.CIR-13-0013
[17] Sharma A, Subudhi SK, Blando J, et al. Anti-CTLA-4 Immunotherapy Does Not Deplete FOXP3(+) Regulatory T Cells (Tregs) in Human Cancers[J]. Clin Cancer Res, 2019, 25: 1233-1238. DOI: 10.1158/1078-0432.CCR-18-0762
[18] Felix J, Lambert J, Roelens M, et al. Ipilimumab reshapes T cell memory subsets in melanoma patients with clinical response[J]. Oncoimmunology, 2016, 5: 1136045. DOI: 10.1080/2162402X.2015.1136045
[19] Gubin MM, Esaulova E, Ward JP, et al. High-Dimensional Analysis Delineates Myeloid and Lymphoid Compartment Remodeling during Successful Immune-Checkpoint Cancer Therapy[J]. Cell, 2018, 175: 1014-1030. DOI: 10.1016/j.cell.2018.09.030
[20] Rotte A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer[J]. J Exp Clin Cancer Res, 2019, 38: 255. DOI: 10.1186/s13046-019-1259-z
[21] Willsmore ZN, Coumbe B, Crescioli S, et al. Combined anti-PD-1 and anti-CTLA-4 checkpoint blockade: Treatment of melanoma and immune mechanisms of action[J]. Eur J Immunol, 2021, 51: 544-556. DOI: 10.1002/eji.202048747
[22] McDermott D, Haanen J, Chen TT, et al. Efficacy and safety of ipilimumab in metastatic melanoma patients surviving more than 2 years following treatment in a phase Ⅲ trial (MDX010-20)[J]. Ann Oncol, 2013, 24: 2694-2698. DOI: 10.1093/annonc/mdt291
[23] Eggermont AM, Chiarion-Sileni V, Grob JJ, et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage Ⅲ melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial[J]. Lancet Oncol, 2015, 16: 522-530. DOI: 10.1016/S1470-2045(15)70122-1
[24] Hodi FS, Chiarion-Sileni V, Gonzalez R, et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial[J]. Lancet Oncol, 2018, 19: 1480-1492. DOI: 10.1016/S1470-2045(18)30700-9
[25] Motzer RJ, Tannir NM, McDermott DF, et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma[J]. N Engl J Med, 2018, 378: 1277-1290. DOI: 10.1056/NEJMoa1712126
[26] Reck M, Schenker M, Lee KH, et al. Nivolumab plus ipilimumab versus chemotherapy as first-line treatment in advanced non-small-cell lung cancer with high tumour mutational burden: patient-reported outcomes results from the randomised, open-label, phase Ⅲ CheckMate 227 trial[J]. Eur J Cancer, 2019, 116: 137-147. DOI: 10.1016/j.ejca.2019.05.008
[27] Paz-Ares LG, Ramalingam SS, Ciuleanu TE, et al. First-Line Nivolumab Plus Ipilimumab in Advanced NSCLC: 4-Year Outcomes From the Randomized, Open-Label, Phase 3 CheckMate 227 Part 1 Trial[J]. J Thorac Oncol, 2022, 17: 289-308. DOI: 10.1016/j.jtho.2021.09.010
[28] Paz-Ares L, Ciuleanu TE, Cobo M, et al. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): an international, randomised, open-label, phase 3 trial[J]. Lancet Oncol, 2021, 22: 198-211. DOI: 10.1016/S1470-2045(20)30641-0
[29] Baas P, Scherpereel A, Nowak AK, et al. First-line nivolumab plus ipilimumab in unresectable malignant pleural mesothelioma (CheckMate 743): a multicentre, randomised, open-label, phase 3 trial[J]. Lancet, 2021, 397: 375-386. DOI: 10.1016/S0140-6736(20)32714-8
[30] Kudo M. Durvalumab Plus Tremelimumab: A Novel Combination Immunotherapy for Unresectable Hepatocellular Carcinoma[J]. Liver Cancer, 2022, 11: 87-93. DOI: 10.1159/000523702
[31] Overman MJ, McDermott R, Leach JL, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study[J]. Lancet Oncol, 2017, 18: 1182-1191. DOI: 10.1016/S1470-2045(17)30422-9
[32] Yau T, Kang YK, Kim TY, et al. Efficacy and Safety of Nivolumab Plus Ipilimumab in Patients With Advanced Hepatocellular Carcinoma Previously Treated With Sorafenib: The CheckMate 040 Randomized Clinical Trial[J]. JAMA Oncol, 2020, 6: e204564. DOI: 10.1001/jamaoncol.2020.4564
[33] 朱军, 黄美金, 陈宏. 进展期胃癌免疫治疗的研究进展[J]. 癌症进展, 2022, 20: 1189-1193. https://www.cnki.com.cn/Article/CJFDTOTAL-AZJZ202212021.htm [34] Tarhini AA, Kang N, Lee SJ, et al. Immune adverse events (irAEs) with adjuvant ipilimumab in melanoma, use of immunosuppressants and association with outcome: ECOG-ACRIN E1609 study analysis[J]. J Immunother Cancer, 2021, 9: e002535. DOI: 10.1136/jitc-2021-002535
[35] Govindan R, Szczesna A, Ahn MJ, et al. Phase Ⅲ Trial of Ipilimumab Combined With Paclitaxel and Carboplatin in Advanced Squamous Non-Small-Cell Lung Cancer[J]. J Clin Oncol, 2017, 35: 3449-3457. DOI: 10.1200/JCO.2016.71.7629
[36] Kang S, Wang X, Zhang Y, et al. First-Line Treatments for Extensive-Stage Small-Cell Lung Cancer With Immune Checkpoint Inhibitors Plus Chemotherapy: A Network Meta-Analysis and Cost-Effectiveness Analysis[J]. Front Oncol, 2021, 11: 740091.
[37] Yu J, Ma S, Tian S, et al. Systematic Construction and Validation of a Prognostic Model for Hepatocellular Carcinoma Based on Immune-Related Genes[J]. Front Cell Dev Biol, 2021, 9: 700553. DOI: 10.3389/fcell.2021.700553
[38] Cedres S, Felip E. 3-Year CheckMate743 outcomes: ringing in immunotherapy for the treatment of malignant pleural mesothelioma[J]. Ann Oncol, 2022, 33: 457-459. DOI: 10.1016/j.annonc.2022.03.004
[39] Takei S, Kawazoe A, Shitara K. The New Era of Immunotherapy in Gastric Cancer[J]. Cancers (Basel), 2022, 14: 1054. DOI: 10.3390/cancers14041054
[40] Weiss SA, Kluger H. CheckMate-067: Raising the Bar for the Next Decade in Oncology[J]. J Clin Oncol, 2022, 40: 111-113. http://pubmed.ncbi.nlm.nih.gov/34855466/
[41] Zhang X, Wu T, Cai X, et al. Neoadjuvant Immunotherapy for MSI-H/dMMR Locally Advanced Colorectal Cancer: New Strategies and Unveiled Opportunities[J]. Front Immunol, 2022, 13: 795972. DOI: 10.3389/fimmu.2022.795972
[42] Cavillon A, Pouessel D, Houédé N, et al. Assessing Long-term Treatment Benefits Using Complementary Statistical Approaches: An In Silico Analysis of the Phase Ⅲ Keynote-045 and Checkmate-214 Immune Checkpoint Inhibitor Trials[J]. Eur Urol, 2023, 25: S0302-2838(23)02619-2.
[43] Owonikoko TK, Park K, Govindan R, et al. Nivolumab and Ipilimumab as Maintenance Therapy in Extensive-Disease Small-Cell Lung Cancer: CheckMate 451[J]. J Clin Oncol, 2021, 39: 1349-1359. DOI: 10.1200/JCO.20.02212
[44] Peters S, Pujol JL, Dafni U, et al. Consolidation nivolumab and ipilimumab versus observation in limited-disease small-cell lung cancer after chemo-radiotherapy-results from the randomised phase Ⅱ ETOP/IFCT 4-12 STIMULI trial[J]. Ann Oncol, 2022, 33: 67-79. DOI: 10.1016/j.annonc.2021.09.011
[45] Mariniello A, Novello S, Scagliotti GV, et al. Double immune checkpoint blockade in advanced NSCLC[J]. Crit Rev Oncol Hematol, 2020, 152: 102980. DOI: 10.1016/j.critrevonc.2020.102980
[46] Rizvi NA, Cho BC, Reinmuth N, et al. Durvalumab With or Without Tremelimumab vs Standard Chemotherapy in First-line Treatment of Metastatic Non-Small Cell Lung Cancer: The MYSTIC Phase 3 Randomized Clinical Trial[J]. JAMA Oncol, 2020, 6: 661-674. DOI: 10.1001/jamaoncol.2020.0237
[47] Boyer M, Şendur M, Rodríguez-Abreu D, et al. Pembrolizumab Plus Ipilimumab or Placebo for Metastatic Non-Small-Cell Lung Cancer With PD-L1 Tumor Proportion Score ≥ 50%: Randomized, Double-Blind Phase Ⅲ KEYNOTE-598 Study[J]. J Clin Oncol, 2021, 39: 2327-2338. DOI: 10.1200/JCO.20.03579
[48] Lee JY, Lee HT, Shin W, et al. Structural basis of checkpoint blockade by monoclonal antibodies in cancer immunotherapy[J]. Nat Commun, 2016, 7: 13354. DOI: 10.1038/ncomms13354
[49] He M, Chai Y, Qi J, et al. Remarkably similar CTLA-4 binding properties of therapeutic ipilimumab and tremelimumab antibodies[J]. Oncotarget, 2017, 8: 67129-67139. DOI: 10.18632/oncotarget.18004
[50] Ramagopal UA, Liu W, Garrett-Thomson SC, et al. Structural basis for cancer immunotherapy by the first-in-class checkpoint inhibitor ipilimumab[J]. Proc Natl Acad Sci USA, 2017, 114: E4223-E4232. http://europepmc.org/articles/PMC5448203/pdf/pnas.201617941.pdf
[51] 左乔竹, 覃文新. CTLA-4和PD-1信号通路在实体瘤治疗中的研究进展[J]. 生命科学, 2017, 29: 713-721. https://www.cnki.com.cn/Article/CJFDTOTAL-SMKX201708002.htm
计量
- 文章访问数: 1028
- HTML全文浏览量: 114
- PDF下载量: 95