食管鳞状细胞癌患者根治术后生存预测模型的建立与验证:一项多中心真实世界队列研究

Development and Validation of A Prognosis Prediction Model for Esophageal Squamous Cell Carcinoma Patients Treated with Esophagectomy: A Multicenter Real-world Cohort Study

  • 摘要:
      目的  建立并验证食管鳞状细胞癌患者根治术后生存预后预测模型与风险分级标准,为术后最优辅助治疗方案的确定提供真实世界证据。
      方法  分别收集2011年5月31日至2018年7月31日在河南省安阳市肿瘤医院(安阳中心)和2009年8月1日至2018年12月31日在广东省汕头大学医学院附属肿瘤医院(汕头中心)连续就诊的食管鳞状细胞癌患者的临床数据和生存随访数据。以安阳中心数据集为建模集,采用基于多因素Cox比例风险回归逐步后退法和AIC准则(Akaike information criterion)的“两步法”构建总生存预测模型。通过Bootstrap重抽样1 000次对模型进行内部统计验证,在汕头中心数据集进行外部验证。根据列线图得分构建预后风险分级标准。
      结果  建模队列和验证队列分别纳入4 171例和1 895例食管鳞状细胞癌患者。模型由年龄、性别、肿瘤原发位置、T分期、N分期、淋巴结清扫数、肿瘤大小、辅助治疗方案和术前血红蛋白水平9个变量组成。其中,N分期与辅助治疗方案存在显著交互作用(P<0.001),即与单纯手术相比,N+期患者可能从辅助治疗中获益,但辅助治疗无法改善N0期患者的预后。建模队列的模型一致性指数(C-index)为0.728 (95% CI: 0.713~0.742),经Bootstrap内部验证后为0.722 (95% CI: 0.711~0.739),验证队列的模型C-index为0.679 (95% CI: 0.662~0.697)。校准图提示模型预测生存率与观测生存率一致性良好。在两个队列中模型准确性均显著高于第7版AJCC(American Joint Committee on Cancer)TNM分期系统(P<0.05)。此外,在各TNM分期内部,该模型仍可实现理想的预后风险分层效果。
      结论  本研究为我国食管鳞状细胞癌患者根治术后总生存提供了个体化预测模型,并揭示N分期可能是制订食管鳞状细胞癌患者术后辅助治疗方案的重要决定因素。

     

    Abstract:
      Objective  To construct and validate a prognosis prediction model and a risk stratification tool for more precise and individualized evaluation of prognosis for patients following resection of esophageal squamous cell carcinoma (ESCC), and provide real-world evidence for informing optimal decision-making about adjuvant therapy.
      Methods  The comprehensive clinical data and follow-up data were collected from consecutive patients with ESCC in the Anyang Cancer Hospital (Anyang center) from May 31, 2011 to July 31, 2018, and in the Cancer Hospital of Shantou University Medical College (Shantou center) from August 1, 2009 to December 31, 2018. Patients from the Anyang center formed the training cohort, and a two-phase selection based on backward stepwise multivariable Cox proportional hazard regression and minimization of AIC was used to construct prediction model for overall survival (OS). Bootstrap with 1 000 resamples was used for internal validation, and cohort from the Shantou center was used for external validation. Furthermore, a risk stratification tool was constructed according to the tertiles of the total points derived from nomogram in the training cohort.
      Results  A total of 4 171 eligible patients were included in the training cohort, and 1 895 patients were included in the validation cohort. The final model incorporated nine variables: age, sex, primary tumor location, T stage, N stage, number of lymph nodes harvested, tumor size, adjuvant treatment, and preoperative hemoglobin level. A significant interaction was observed between N stage and adjuvant treatment (P < 0.001), which means that N+ stage patients were likely to benefit from addition of adjuvant therapy as opposed to surgery alone, but adjuvant therapy did not improve OS for N0 stage patients. The C-index of the model was 0.728 (95% CI: 0.713-0.742) in the training cohort, 0.722 (95% CI: 0.711-0.739) after bootstrapping, and 0.679 (95% CI: 0.662-0.697) in the external validation cohort. Calibration plots demonstrated favorable agreement between model prediction and actual observation for 1-, 3- and 5-year OS. In both training and validation cohorts, this model outperformed the seventh edition of the AJCC TNM (tumor, lymph node, and metastasis) staging system in terms of the accuracy of prognostic prediction (P < 0.05). Moreover, within each TNM staging group, this model achieved ideal risk stratification.
      Conclusions  The prediction model constructed in this study may provide individualized survival prediction for patients with resected ESCC in China. This study also demonstrated that the N stage may be a fundamental determinant in planning postoperative adjuvant therapy for ESCC patients.

     

/

返回文章
返回