胃肠道疾病与菌群治疗

黄子誉, 左涛, 兰平

黄子誉, 左涛, 兰平. 胃肠道疾病与菌群治疗[J]. 协和医学杂志, 2022, 13(5): 732-739. DOI: 10.12290/xhyxzz.2022-0208
引用本文: 黄子誉, 左涛, 兰平. 胃肠道疾病与菌群治疗[J]. 协和医学杂志, 2022, 13(5): 732-739. DOI: 10.12290/xhyxzz.2022-0208
HUANG Ziyu, ZUO Tao, LAN Ping. Gastrointestinal Diseases and Gut Microbiome Therapy[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(5): 732-739. DOI: 10.12290/xhyxzz.2022-0208
Citation: HUANG Ziyu, ZUO Tao, LAN Ping. Gastrointestinal Diseases and Gut Microbiome Therapy[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(5): 732-739. DOI: 10.12290/xhyxzz.2022-0208

胃肠道疾病与菌群治疗

基金项目: 

国家自然科学基金 U21A20344

国家自然科学基金 82172323

国家自然科学基金 32100134

国家临床重点专科项目;广州市科技计划项目 202206010014

详细信息
    通讯作者:

    左涛, E-mail: zuot@mail.sysu.edu.cn

    兰平, E-mail: lanping@mail.sysu.edu.cn

  • 中图分类号: R37

Gastrointestinal Diseases and Gut Microbiome Therapy

Funds: 

National Natural Science Foundation of China U21A20344

National Natural Science Foundation of China 82172323

National Natural Science Foundation of China 32100134

National Key Clinical Discipline; Municipal Key Research and Development Program of Guangzhou 202206010014

More Information
  • 摘要: 肠道菌群通过其代谢物、分泌物或细胞成分参与调节宿主代谢和免疫,并保护宿主抵抗病原微生物入侵。环境、营养、生活习惯改变以及抗生素滥用等原因均可导致肠道微生态结构和功能失调,进而导致多种疾病。与此同时,肠道菌群亦成为极具潜力的疾病治疗手段。本文将对胃肠道疾病(包括胃肠道感染性疾病、炎症性肠病、肠易激综合征等)与菌群的关系以及基于肠道菌群治疗该类疾病的最新研究成果进行总结,并对肠道菌群在未来疾病预防和干预中的前景作出展望。
    Abstract: Gut microbiome regulates host metabolism and immunity via their metabolites, secretions, and cellular components, and protects the host from pathogen invasion. Low diversity and dysfunction of the gut microbiome caused by environmental changes, unhealthy dietary habits and lifestyles, and antibiotics abuse are closely related to disease pathogenesis. Gut microbiome can serve as diagnostic and therapeutic tools for diseases related to gut microbiome dysbiosis. In this article, we aim to review the latest study advances on gut microbiome in the pathogenesis and therapeutics of gastrointestinal diseases, such as Clostridium difficile infection, Helicobacter pylori infection, inflammatory bowel disease, and irritable bowel syndrome, so as to shed light on the prospect of gut microbiome modulations in disease therapies.
  • 食管癌是起源于食管上皮组织的恶性肿瘤,为消化系统最常见的恶性肿瘤之一。其治疗方式包括外科手术、放化疗以及综合治疗。对于可切除性食管癌,外科治疗是最有效的治疗方式,但外科手术损伤大、并发症多。随着医学水平提高,外科手术趋于微创化,其中胸腹腔镜下微创McKeown食管癌切除术具有病灶切除完全、淋巴结清扫彻底、损伤小,严重并发症少、近期疗效好等优势,已成为食管癌治疗的主流方式。

    食管癌患者术前多存在不同程度的吞咽困难,且术后禁食禁水时间长,易发生围术期营养不良,导致术后并发症增加,影响患者康复,常需进行营养干预。早期肠内营养支持有助于改善患者术后营养状况,且可避免肠外营养相关的副作用,在减少术后感染、吻合口漏发生率方面更具优势[1]。目前食管癌术后早期肠内营养支持主要包括经口营养、经鼻空肠营养和空肠造瘘营养,各种营养支持方式的优劣性仍存争议[2]。腹腔镜空肠造瘘营养可通过腹部小切口将营养管置入空肠内,经腹壁引出并固定,继而进行肠内营养泵注。北京协和医院胸外科自2017年11月起开始将该营养支持方式应用于食管癌手术患者。本研究对北京协和医院连续7年行微创McKeown食管癌切除术的数据进行总结,发现相较于早期经口肠内营养,空肠造瘘肠内营养在缩短术后住院时间、提高术后辅助化疗完成率、改善术后早期营养状况及患者生活质量方面均更具优势,现报告如下,以供临床医师借鉴。

    本研究为回顾性研究。研究对象为2013年1月至2020年6月北京协和医院胸外科诊治的食管癌患者。纳入标准:(1)经内镜活检组织病理确诊为原发性食管鳞状细胞癌;(2)行胸腹腔镜McKeown三切口食管癌切除术;(3)无远处转移灶;(4) 术后住院期间经口或经空肠造瘘进行肠内营养支持。排除标准:(1)合并其他系统肿瘤的患者;(2)术中转为开放手术的患者;(3)术前基线资料及术后主要观察指标检查结果缺失者。

    患者根据术后营养支持方式进行分组。其中2013年1月至2017年10月的患者术后采用经口肠内营养,为经口营养组;2017年11月至2020年6月的患者术中行腹腔镜空肠造瘘,术后早期经空肠造瘘管予肠内营养支持,为空肠造瘘组。

    本研究已通过北京协和医院伦理委员会审批(审批号:K2253),并豁免患者知情同意。

    所有患者由同一手术组医师实施胸腹腔镜McKeown三切口食管癌切除术,采用单腔气管插管、右侧支气管封堵器进行麻醉,具体步骤参见文献[3]。空肠造瘘组在肿瘤切除后即进行空肠造瘘,造瘘装置为德国Freka公司产品。在完成腔镜下游离并制作完成细管胃后,患者采取头低脚高位。选择距离屈氏韧带40 cm空肠系膜缘对侧处作为空肠穿刺点。首先使用3-0荷包线直针由左上腹皮肤穿刺孔上方穿刺进入腹腔,于空肠穿刺点近端沿肠壁横轴行浆肌层预置半荷包(图 1A)。穿刺针出肠壁后再由穿刺孔上方自腹腔向皮下穿出,完成近端半荷包缝合。然后使用3-0可吸收线于空肠穿刺点周围预置八字缝合,以备腹腔内固定空肠造瘘管(图 1B)。使用3-0半荷包直针以同样方法于空肠穿刺点远端、第一道半荷包对侧行另一半荷包缝合(图 1C)。将肠壁穿刺器经腹壁穿刺进入腹腔后,于八字缝合线中间处穿刺空肠壁进入肠腔(图 1D),置入造瘘管并引导造瘘管进入空肠远端40 cm。将八字缝合线打结并收紧固定空肠造瘘管(图 1E),然后于腹腔外收紧两道荷包线,使空肠紧密贴合于腹壁(图 1F)。注入生理盐水确定造瘘管通畅,缝合皮肤切口并固定营养管。

    图  1  腹腔镜下空肠造瘘的主要操作步骤

    (1) 经口营养组:术后严格禁食禁水、全肠外营养7 d,术后第7天行上消化道造影,排除明显吻合口漏后在医师指导下进流食,并逐渐加量、过渡至半流食及安素营养粉,根据个体情况逐渐减停肠外营养后出院,每天经口进食约6~8次。(2)空肠造瘘组:术后严格禁食禁水,前2 d予全肠外营养支持。第3天经空肠造瘘管泵入500 mL葡萄糖氯化钠溶液,起始泵速20 mL/h,持续泵入。如患者无特殊不适,术后第4天起泵入肠内营养液,起始速率为5 kcal/ (kg·d),逐渐增加至30 kcal/ (kg·d),并逐渐减停肠外营养至术后第3周。如无特殊情况,患者术后早期无需常规行上消化道造影检查。出院后保持禁食禁水,术后第3周复查上消化道造影无异常后开始过渡为经口进食,如无需辅助化疗,则根据经口进食情况逐渐减停空肠造瘘营养支持并拔除营养管;如需辅助化疗,则空肠造瘘营养支持至化疗结束,并根据情况拔除营养管。患者出院时详细告知空肠造瘘营养管护理要点,包括定期使用含碘消毒液消毒、及时加固营养管固定线、定期营养管冲洗防止阻塞等,必要时可门急诊就诊。

    (1) 治疗相关指标:手术时间、术后住院时间、术后辅助化疗完成率(完成辅助化疗的患者数/需行辅助化疗的患者数)、围术期并发症(包括导管相关并发症、手术相关并发症)。(2)营养状况:术前与术后7 d血清总蛋白、白蛋白;术前与术后1个月、3个月体质量指数(body mass index, BMI);术后1个月、3个月体质量下降率(术后体质量减少值占术前体质量的百分比)。(3)生活质量:采用生命质量测定量表(quality of life questionnaire-core 30,QLQ-C30)评估患者术前、术后7 d、术后1个月生活质量。QLQ-C30为欧洲癌症治疗研究组织所编制,包含2个症状量表(疼痛和虚弱)、4个功能量表(情绪、角色、社会功能和躯体) 和1个总体生活质量量表(总分),共7个量表 30个条目,主要用于评估术前和术后患者健康相关生活质量[4]。症状量表评分越高表示生活质量越差,功能性量表和生活质量总分越高表示生活质量越好。

    根据术后1个月QLQ-C30总分进行样本量估算。根据既往临床经验,空肠造瘘组术后1个月QLQ-C30总分约为80±20,经口营养组约为70±20,检验水准α为0.05,双侧检验,β为0.1(把握度90%),空肠造瘘组和经口营养组样本量为2∶1。经计算,空肠造瘘组样本量最低为94例,经口营养组最低为47例。样本量估算通过Power and Sample Size软件完成。

    采用SPSS 22.0软件进行统计学分析。白蛋白、总蛋白、BMI、体质量下降率等符合正态分布(Kolmogorov-Smirnov检验)的计量资料以均数±标准差表示,组间比较采用t检验;年龄、手术时间、术后住院时间等不符合正态分布,以中位数(四分位数)表示,组间比较采用Mann-Whitney U检验。性别、TNM分期、并发症等计数资料以频数(百分数)表示,组间比较采用卡方检验或Fisher精确概率法。以P<0.05为差异具有统计学意义。

    共入选符合纳入和排除标准的食管癌患者190例。其中空肠造瘘组128例、经口营养组62例。两组年龄、性别、TNM分期、肿瘤部位等基线资料见表 1

    表  1  两组患者基线资料比较
    指标 空肠造瘘组(n=128) 经口营养组(n=62)
    年龄[M(P25, P75), 岁] 63(57, 67) 60(54, 67)
    性别[n(%)]
      男 108(84.38) 54(87.10)
      女 20(15.62) 8(12.90)
    TNM分期[n(%)]
      Ⅰ 33(25.78) 16(25.81)
      Ⅱ 44(34.38) 22(35.48)
      Ⅲ 41(32.03) 19(30.65)
      Ⅳ 10(7.81) 5(8.06)
    肿瘤部位[n(%)]
      食管上段 13(10.16) 9(14.52)
      食管中段 71(55.47) 30(48.39)
      食管下段 44(34.37) 23(37.09)
    术前新辅助治疗[n(%)] 45(35.16) 20(32.26)
    术后辅助化疗[n(%)] 62(48.44) 28(45.16)
    下载: 导出CSV 
    | 显示表格

    空肠造瘘组共发生导管相关并发症6例(4.69%),包括肠梗阻2例,伤口感染2例,导管移位1例(0.78%),二次手术1例。空肠造瘘组术后辅助化疗完成率高于经口营养组(P=0.005),术后住院时间低于经口营养组(P<0.001)。两组手术时间、手术相关并发症发生率均无显著差异(P均>0.05),见表 2

    表  2  两组患者治疗相关指标比较
    指标 空肠造瘘组(n=128) 经口营养组(n=62) P
    手术时间[M(P25, P75), min] 335(300,374) 330(310, 370) 0.750
    术后住院时间[M(P25, P75), d] 11(9, 13) 14(13, 20) <0.001
      有吻合口漏 20(15, 32) 36(28, 80) 0.040
      无吻合口漏 10(9, 12) 14(13, 18) <0.001
    完成术后辅助化疗[n(%)] 59(95.16) 21(75.00) 0.005
    手术相关并发症[n(%)] 36(28.13) 22(35.48) 0.748
      吻合口漏 10(7.81) 7(11.29) 0.431
      喉返神经损伤 12(9.38) 7(11.29) 0.680
      呼吸系统并发症 6(4.69) 5(8.06) 0.350
      心血管系统并发症 5(3.91) 2(3.23) 0.816
      乳糜漏 2(1.56) 1(1.61) 0.975
      术后30 d内死亡 1(0.78) 0(0) 0.485
    下载: 导出CSV 
    | 显示表格

    两组术前BMI及围术期总蛋白、白蛋白均无显著性差异(P均>0.05)。空肠造瘘组术后1个月、3个月BMI均高于经口营养组,术后1个月、3个月体质量下降率均低于经口营养组(P均<0.05),见表 3

    表  3  两组患者围术期营养指标比较(x±s)
    指标 空肠造瘘组(n=128) 经口营养组(n=62) P
    白蛋白(g/L)
      术前 39.6±4.5 39.7±4.9 0.951
      术后7 d 34.2±4.5 33.2±5.0 0.171
    总蛋白(g/L)
      术前 56.1±5.6 56.8±4.6 0.430
      术后7 d 52.9±5.7 51.7±4.4 0.147
    BMI(kg/m2)
      术前 24.2±3.4 24.3±3.8 0.804
      术后1个月 23.3±3.5 21.7±3.9 0.006
      术后3个月 22.6±3.5 20.6±4.0 <0.001
    体质量下降率(%)
      术后1个月 3.9±2.2 10.3±3.5 <0.001
      术后3个月 6.5±3.1 15.7±4.8 <0.001
    BMI:体质量指数
    下载: 导出CSV 
    | 显示表格

    两组术前生活质量评分均无显著差异(P均>0.05)。与术前比较,两组患者术后7 d时生活质量症状量表评分均升高,功能量表评分及总体生活质量评分均急剧降低,术后1个月时各评分均有不同程度改善,尤其空肠造瘘组功能量表评分及总体生活质量评分接近术前状态。相较于经口营养组,空肠造瘘组术后7 d与术后1个月时症状量表评分(术后1个月时疼痛评分除外)均降低,功能量表评分及总体生活质量评分均升高(P均<0.05),见图 2

    图  2  两组围术期生活质量评分比较
    A.术前;B.术后7 d;C.术后1个月;*P<0.05

    良好的营养状况有助于降低术后并发症,增强免疫功能,促进机体功能恢复。由于术前吞咽功能障碍及术后禁食禁水导致营养摄入不足,营养支持已成为食管癌围术期治疗的重要部分。相较于肠外营养,肠内营养支持提供的营养更全面、费用更低、可使用时间更长且并发症更少,临床应用更广泛,但何种方式的肠内营养为最佳途径尚存争议。本研究对比了经口营养与经空肠造瘘营养在行微创McKeown食管癌切除术患者中的应用情况,发现两组手术相关并发症发生率无显著差异,且相较于经口营养组,空肠造瘘组患者术后1个月、3个月BMI及术后7 d、术后1个月生活质量均更高,术后1个月、3个月体质量下降率均更低,提示空肠造瘘营养支持安全可行,在术后营养支持、促进患者术后生活质量恢复方面更具优势。

    小肠蠕动、吸收功能约在术后6 h即开始恢复,早期肠内营养可刺激内脏神经对消化道的支配,促进胃肠蠕动和排气,缩短恢复正常饮食的时间,并可改善患者营养状况,提高免疫功能,这亦是加速术后康复理念的重要基础[5]。但由于手术创伤,且受吻合口漏和术后感染引起肺炎等严重并发症的影响,食管癌患者术后早期经口进食仍难以实现。通过其他途径进行肠内营养,如经鼻空肠营养或空肠造瘘营养成为目前食管癌切除术后早期营养支持的主要途径[6],但经空肠造瘘营养是否优于经口营养仍存在不同看法。一项研究纳入了154例接受食管癌切除术的患者,旨在比较不同营养支持方式的优劣势,结果显示与经口营养组相比,经空肠造瘘组围术期严重并发症的发生率明显降低,提示该方法在围术期安全方面更具优势[7]。Akiyama等[8]研究认为,经空肠造瘘营养支持会明显增加并发症发生率,并非所有接受食管癌切除术的患者均适合进行该途径的营养干预。根据临床经验,由于Mckeown食管癌切除术后管胃行程长、张力高、血供差等特点,使颈部吻合口漏的发生率高于胸腔内吻合(本研究吻合口漏总体发生率为8.95%),特别适合空肠造瘘术的实施。本研究结果显示,空肠造瘘组术后1个月、3个月BMI均高于经口营养组,术后1个月、3个月体质量下降率低于经口营养组,提示对于适宜进行空肠造瘘营养干预的患者,该方法营养支持性好,更有利于术后营养供应。可能原因:空肠营养可根据患者需求选用不同配方的营养液,如糖尿病专用配方、高能量配方等,且营养液调整方便。此外,由于空肠造瘘营养支持具有良好的耐受性,对于不能经口营养的患者而言,其经济性好、安全性高,可作为长期营养支持的替代方法[9]

    随着医疗理念的更新,越来越多的临床医师在追求治疗疾病的同时,更加注重保障患者的生活质量。食管癌切除术后生活质量受手术治疗效果、是否放化疗、并发症及机体自身状况等因素的影响,QLQ-C30量表可从临床症状、机体功能等方面评估患者的生活质量[10],且尤其适用于癌症患者[2]。一项系统性研究表明,在食管癌切除术后的数天内,患者的QLQ-C30生活质量总体评分急剧下降[11]。本研究结果显示,与术前比较,两组患者术后7 d时生活质量症状量表评分均升高,功能量表评分及总体生活质量评分均急剧降低,术后1个月时各项评分均有不同程度改善,尤其空肠造瘘组功能量表评分及总体生活质量评分接近术前状态,提示适宜的营养补充对患者术后身体与心理的恢复是必要的。与经口营养组比较,空肠造瘘组患者在术后不同时间点的症状量表评分更低,功能量表评分及总体生活质量评分均更高、术后住院时间更短,提示经空肠造瘘营养支持更有助于食管癌患者术后回归正常生活,可能与该方法提供的营养更全面、更符合生理特点有关。

    日本一项研究表明,食管癌切除术中常规放置空肠造瘘管未改善术后营养不良,且增加术后并发症发生率[12]。笔者认为,该研究术后肠梗阻发生率高达11.5%,提示其造瘘方法本身可能存在问题。本研究结果显示,与经口营养组比较,空肠造瘘组手术相关并发症发生率并未显著增加,且导管相关并发症发生率较低(4.69%),与既往报道结果一致[13]。本研究多数导管相关并发症经保守治疗后好转,仅1例肠梗阻患者保守治疗无效,通过二次腹腔镜手术探查,粘连松解、去除空肠造瘘管后病情好转。此外,与另一种肠内营养途径经鼻空肠营养比较,经空肠造瘘营养的营养管放置度更深,不易引起营养液反流,且无经鼻空肠营养引起的鼻咽部不适症状,同时空肠造瘘管缝合于腹壁,可降低营养管脱落的风险。本研究空肠造瘘管平均放置时间为12 min,未明显增加手术时间,提示该途径的营养支持安全性高、具有可行性。

    鉴于既往研究中放置营养管可引起肠梗阻,笔者总结了4点心得,可能有助于预防该现象发生。(1)术中轻轻牵拉肠管,并提前将肠管方向摆放好。将空肠造瘘管由近端插入空肠远端,避免发生扭转,并将肠管固定在腹壁上。为避免张力过大,手术部位距屈氏韧带不应小于40 cm。(2)患者于术前一晚接受肠道准备,术后通过胃管持续胃肠减压。在条件允许的情况下,及时下床活动可增加胃肠动力;同时控制肠内营养的速度、温度及浓度,减少对肠道的刺激。(3)出现腹胀等不适症状后,可采取一些积极的治疗措施,以促进胃肠减压,如腹部按摩、床下活动、灌肠或口服乳果糖。(4)若上述步骤无法缓解临床症状,并出现绞窄性肠梗阻,应考虑手术探查。

    本研究局限性:(1)回顾性研究,由于病例数较少而未进行严格配对,且两组为不同时期手术患者,可能结果存在一定偏倚;(2)虽然空肠造瘘组术后辅助化疗完成率高于经口营养组,理论上有助于提高治疗效果,延长生存期。但本研究观察时间较短,未获得患者的远期生存及生活质量情况,空肠造瘘营养支持对患者远期影响未纳入分析。

    综上所述,空肠造瘘是一种经济、安全的营养支持方法。与经口营养比较,该营养途径更有利于食管癌切除术患者术后营养支持,促进生活质量的恢复,并可提高术后新辅助化疗完成率且未增加手术相关并发症发生率,安全性高,值得临床推广应用。空肠造瘘的最适宜人群、个体化方案选择、对患者远期生存的影响,仍需更多循证医学研究证实。

    作者贡献:黄子誉负责文献检索及论文撰写;兰平、左涛共同参与论文选题和设计;左涛负责论文修订。
    利益冲突:所有作者均声明不存在利益冲突
  • [1]

    Kordus SL, Thomas AK, Lacy DB. Clostridioides difficile toxins: mechanisms of action and antitoxin therapeutics[J]. Nat Rev Microbiol, 2022, 20: 285-298. DOI: 10.1038/s41579-021-00660-2

    [2]

    Shen A. Clostridioides difficile Spore Formation and Germination: New Insights and Opportunities for Intervention[J]. Annu Rev Microbiol, 2020, 74: 545-566. DOI: 10.1146/annurev-micro-011320-011321

    [3]

    Simpson M, Frisbee A, Kumar P, et al. Clostridioides difficile Binary Toxin Is Recognized by the Toll-Like Rece-ptor 2/6 Heterodimer to Induce a Nuclear Factor-κB Response[J]. J Infect Dis, 2022, 225: 1296-1300. DOI: 10.1093/infdis/jiaa620

    [4]

    O'connor A, O'morain CA, Ford AC. Population screening and treatment of Helicobacter pylori infection[J]. Nat Rev Gastroenterol Hepatol, 2017, 14: 230-240. DOI: 10.1038/nrgastro.2016.195

    [5]

    Bernardini G, Figura N, Ponzetto A, et al. Application of proteomics to the study of Helicobacter pylori and implications for the clinic[J]. Expert Rev Proteomics, 2017, 14: 477-490. DOI: 10.1080/14789450.2017.1331739

    [6]

    Matsuoka K, Kobayashi T, Ueno F, et al. Evidence-based clinical practice guidelines for inflammatory bowel disease[J]. J Gastroenterol, 2018, 53: 305-353. DOI: 10.1007/s00535-018-1439-1

    [7]

    Aden K, Rehman A, Waschina S, et al. Metabolic Functions of Gut Microbes Associate With Efficacy of Tumor Necrosis Factor Antagonists in Patients With Inflammatory Bowel Diseases[J]. Gastroenterology, 2019, 157: 1279-1292. e1211. DOI: 10.1053/j.gastro.2019.07.025

    [8]

    Rodríguez C, Romero E, Garrido-Sanchez L, et al. Microbiota Insights in Clostridium Difficile Infection and In-flammatory Bowel Disease[J]. Gut Microbes, 2020, 12: 1725220. DOI: 10.1080/19490976.2020.1725220

    [9]

    Franzosa EA, Sirota-Madi A, Avila-Pacheco J, et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease[J]. Nat Microbiol, 2019, 4: 293-305. DOI: 10.1038/s41564-018-0306-4

    [10]

    Haberman Y, Karns R, Dexheimer PJ, et al. Ulcerative colitis mucosal transcriptomes reveal mitochondriopathy and personalized mechanisms underlying disease severity and treatment response[J]. Nat Commun, 2019, 10: 38. DOI: 10.1038/s41467-018-07841-3

    [11]

    Duan R, Zhu S, Wang B, et al. Alterations of Gut Microbiota in Patients With Irritable Bowel Syndrome Based on 16S rRNA-Targeted Sequencing: A Systematic Review[J]. Clin Transl Gastroenterol, 2019, 10: e00012. DOI: 10.14309/ctg.0000000000000012

    [12]

    Zhang Y, Saint Fleur A, Feng H. The development of live biotherapeutics against Clostridioides difficile infection towards reconstituting gut microbiota[J]. Gut Microbes, 2022, 14: 2052698-2052698. DOI: 10.1080/19490976.2022.2052698

    [13]

    Cammarota G, Ianiro G, Kelly CR, et al. International consensus conference on stool banking for faecal microbiota transplantation in clinical practice[J]. Gut, 2019, 68: 2111-2121. DOI: 10.1136/gutjnl-2019-319548

    [14]

    van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal Infusion of Donor Feces for Recurrent Clostridium difficile[J]. N Eng J Med, 2013, 368: 407-415. DOI: 10.1056/NEJMoa1205037

    [15]

    Brown JRM, Flemer B, Joyce SA, et al. Changes in microbiota composition, bile and fatty acid metabolism, in successful faecal microbiota transplantation for Clostridioides difficile infection[J]. BMC Gastroenterol, 2018, 18: 131. DOI: 10.1186/s12876-018-0860-5

    [16]

    Feuerstadt P, Louie TJ, Lashner B, et al. SER-109, an Oral Microbiome Therapy for Recurrent Clostridioides difficile Infection[J]. N Engl J Med, 2022, 386: 220-229. DOI: 10.1056/NEJMoa2106516

    [17]

    Zuo T, Wong SH, Cheung CP, et al. Gut fungal dysbiosis correlates with reduced efficacy of fecal microbiota transplantation in Clostridium difficile infection[J]. Nat commun, 2018, 9: 1-11. DOI: 10.1038/s41467-017-02088-w

    [18]

    Paramsothy S, Kamm MA, Kaakoush NO, et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial[J]. Lancet, 2017, 389: 1218-1228. DOI: 10.1016/S0140-6736(17)30182-4

    [19]

    Costello SP, Waters O, Bryant RV, et al. Short duration, low intensity, pooled fecal microbiota transplantation induces remission in patients with mild-moderately active ulcerative colitis: a randomised controlled trial[J]. Gastroenterology, 2017, 152: S198-S199.

    [20]

    Sokol H, Landman C, Seksik P, et al. Fecal microbiota transplantation to maintain remission in Crohn's disease: a pilot randomized controlled study[J]. Microbiome, 2020, 8: 12. DOI: 10.1186/s40168-020-0792-5

    [21]

    Johnsen PH, Hilpüsch F, Cavanagh JP, et al. Faecal microbiota transplantation versus placebo for moderate-to-severe irritable bowel syndrome: a double-blind, randomised, placebo-controlled, parallel-group, single-centre trial[J]. Lancet Gastroenterol Hepatol, 2018, 3: 17-24. DOI: 10.1016/S2468-1253(17)30338-2

    [22]

    Halkjær SI, Christensen AH, Lo BZS, et al. Faecal microbiota transplantation alters gut microbiota in patients with irritable bowel syndrome: results from a randomised, double-blind placebo-controlled study[J]. Gut, 2018, 67: 2107-2115. DOI: 10.1136/gutjnl-2018-316434

    [23]

    Hill C, Guarner F, Reid G, et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic[J]. Nat Rev Gastroenterol Hepatol, 2014, 11: 506-514. DOI: 10.1038/nrgastro.2014.66

    [24]

    Nobutani K, Sawada D, Fujiwara S, et al. The effects of administration of the Lactobacillus gasseri strain CP2305 on quality of life, clinical symptoms and changes in gene expression in patients with irritable bowel syndrome[J]. J Appl Microbiol, 2017, 122: 212-224. DOI: 10.1111/jam.13329

    [25]

    Libertucci J, Young VB. The role of the microbiota in infectious diseases[J]. Nat Microbiol, 2019, 4: 35-45. DOI: 10.1038/s41564-018-0278-4

    [26]

    Singh RK, Chang HW, Yan D, et al. Influence of diet on the gut microbiome and implications for human health[J]. J Transl Med, 2017, 15: 73. DOI: 10.1186/s12967-017-1175-y

    [27]

    van der Hee B, Wells JM. Microbial Regulation of Host Physiology by Short-chain Fatty Acids[J]. Trends Microbiol, 2021, 29: 700-712. DOI: 10.1016/j.tim.2021.02.001

    [28]

    Abraham BP, Quigley EM. Probiotics in inflammatory bowel disease[J]. Gastroenterol Clin, 2017, 46: 769-782. DOI: 10.1016/j.gtc.2017.08.003

    [29]

    Ghavami SB, Yadegar A, Aghdaei HA, et al. Immunomodulation and generation of tolerogenic dendritic cells by probiotic bacteria in patients with inflammatory bowel disease[J]. Int J Mol Sci, 2020, 21: 6266. DOI: 10.3390/ijms21176266

    [30]

    Wu L, Wang Z, Sun G, et al. Effects of anti-H. pylori triple therapy and a probiotic complex on intestinal microbiota in duodenal ulcer[J]. Sci Rep, 2019, 9: 12874. DOI: 10.1038/s41598-019-49415-3

    [31]

    Alba C, Blanco A, Alarcón T. Antibiotic resistance in Helicobacter pylori[J]. Curr Opin Infect Dis, 2017, 30: 489-497. DOI: 10.1097/QCO.0000000000000396

    [32]

    Sykora J, Valeckova K, Amlerova J, et al. Effects of a specially designed fermented milk product containing prob iotic Lactobacillus casei DN-114 001 and the eradication of H. pylori in children: a prospective randomized double-blind study[J]. J Clin Gastroenterol, 39: 692-698. DOI: 10.1097/01.mcg.0000173855.77191.44

    [33]

    Deguchi R, Nakaminami H, Rimbara E, et al. Effect of pretreatment with Lactobacillus gasseri OLL2716 on first-line Helicobacter pylori eradication therapy[J]. J Gastroenterol Hepatol, 2012, 27: 888-892. DOI: 10.1111/j.1440-1746.2011.06985.x

    [34]

    Hegazy SK, El-Bedewy MM. Effect of probiotics on pro-inflammatory cytokines and NF-κB activation in ulcerative colitis[J]. World J Gastroenterol, 2010, 16: 4145. DOI: 10.3748/wjg.v16.i33.4145

    [35]

    Imaoka A, Shima T, Kato K, et al. Anti-inflammatory activity of probiotic Bifidobacterium: enhancement of IL-10 production in peripheral blood mononuclear cells from ulcerati ve colitis patients and inhibition of IL-8 secretion in HT-29 cells[J]. World J Gastroenterol, 2008, 14: 2511. DOI: 10.3748/wjg.14.2511

    [36]

    Palumbo VD, Romeo M, Marino Gammazza A, et al. The long-term effects of probiotics in the therapy of ulcerative colitis: A clinical study[J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2016, 160: 372-377. DOI: 10.5507/bp.2016.044

    [37]

    Generoso SV, Viana ML, Santos RG, et al. Protection against increased intestinal permeability and bacterial translocation induced by intestinal obstruction in mice treated with viable and heat-killed Saccharomyces boulardii[J]. Eur J Nutr, 2011, 50: 261-269. DOI: 10.1007/s00394-010-0134-7

    [38]

    Bourreille A, Cadiot G, Le Dreau G, et al. Saccharomyces boulardii does not prevent relapse of Crohn's disease[J]. Clin Gastroenterol Hepatol, 2013, 11: 982-987. DOI: 10.1016/j.cgh.2013.02.021

    [39]

    Zhang MY, Zhang CC, Zhao JX, et al. Meta-analysis of the efficacy of probiotic-supplemented therapy on the eradication of H. pylori and incidence of therapy-associated side effects[J]. Microb Pathog, 2020, 147: 104403. DOI: 10.1016/j.micpath.2020.104403

    [40]

    Yoon JS, Sohn W, Lee OY, et al. Effect of multispecies probiotics on irritable bowel syndrome: A randomized, double-blind, placebo-controlled trial[J]. J Gastroenterol Hepatol, 2014, 29: 52-59. DOI: 10.1111/jgh.12322

    [41]

    Barker AK, Duster M, Valentine S, et al. A randomized controlled trial of probiotics for Clostridium difficile infection in adults (PICO)[J]. J Antimicrob Chemother, 2017, 72: 3177-3180. DOI: 10.1093/jac/dkx254

    [42]

    Gibson GR, Hutkins R, Sanders ME, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics[J]. Nat Rev Gastroenterol Hepatol, 2017, 14: 491-502. DOI: 10.1038/nrgastro.2017.75

    [43]

    Thilakarathna WW, Langille MG, Rupasinghe HV. Polyphenol-based prebiotics and synbiotics: potential for cancer chemoprevention[J]. Cur Opin Food Sci, 2018, 20: 51-57. DOI: 10.1016/j.cofs.2018.02.011

    [44]

    De Almeida CV, de Camargo MR, Russo E, et al. Role of diet and gut microbiota on colorectal cancer immunomodulation[J]. World J Gastroenterol, 2019, 25: 151.

    [45]

    Zhang XF, Guan XX, Tang YJ, et al. Clinical effects and gut microbiota changes of using probiotics, prebiotics or synbiotics in inflammatory bowel disease: a systematic review and meta-analysis[J]. Eur J Nutr, 2021, 60: 2855-2875. DOI: 10.1007/s00394-021-02503-5

    [46]

    Niv E, Halak A, Tiommny E, et al. Randomized clinical study: Partially hydrolyzed guar gum (PHGG) versus placebo in the treatment of patients with irritable bowel syndrome[J]. Nutr Metab (Lond), 2016, 13: 10. DOI: 10.1186/s12986-016-0070-5

    [47]

    Azpiroz F, Dubray C, Bernalier-Donadille A, et al. Effects of scFOS on the composition of fecal microbiota and anxiety in patients with irritable bowel syndrome: a randomized, double blind, placebo controlled study[J]. Neurogastroenterol Motil, 2017, 29: e12911. DOI: 10.1111/nmo.12911

    [48]

    Swanson KS, Gibson GR, Hutkins R, et al. The Interna-tional Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics[J]. Nat Rev Gastroenterol Hepatol, 2020, 17: 687-701. DOI: 10.1038/s41575-020-0344-2

    [49]

    Steed H, Macfarlane GT, Blackett KL, et al. Clinical trial: the microbiological and immunological effects of synbiotic consumption-a randomized double-blind placebo-controlled study in active Crohn's disease[J]. Aliment Pharmacol Ther, 2010, 32: 872-883. DOI: 10.1111/j.1365-2036.2010.04417.x

    [50]

    Furrie E, Macfarlane S, Kennedy A, et al. Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: a randomised controlled pilot trial[J]. Gut, 2005, 54: 242-249. DOI: 10.1136/gut.2004.044834

    [51]

    Fujimori S, Gudis K, Mitsui K, et al. A randomized controlled trial on the efficacy of synbiotic versus probiotic or prebiotic treatment to improve the quality of life in patients with ulcerative colitis[J]. Nutrition, 2009, 25: 520-525. DOI: 10.1016/j.nut.2008.11.017

    [52]

    Moser AM, Spindelboeck W, Halwachs B, et al. Effects of an oral synbiotic on the gastrointestinal immune system and microbiota in patients with diarrhea-predominant irritable bowel syndrome[J]. Eur J Nutr, 2019, 58: 2767-2778.

    [53]

    Skrzydło-Radomańska B, Prozorow-Król B, Cichoż-Lach H, et al. The Effectiveness of Synbiotic Preparation Containing Lactobacillus and Bifidobacterium Probiotic Strains and Short Chain Fructooligosaccharides in Patients with Diarrhea Predominant Irritable Bowel Syndrome—A Randomized Double-Blind, Placebo-Controlled Study[J]. Nutrients, 2020, 12: 1999. DOI: 10.3390/nu12071999

    [54]

    Pourmasoumi M, Najafgholizadeh A, Hadi A, et al. The effect of synbiotics in improving Helicobacter pylori eradication: A systematic review and meta-analysis[J]. Complement Ther Med, 2019, 43: 36-43. DOI: 10.1016/j.ctim.2019.01.005

    [55]

    Salminen S, Collado MC, Endo A, et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics[J]. Nat Rev Gastroenterol Hepatol, 2021, 18: 649-667. DOI: 10.1038/s41575-021-00440-6

    [56]

    Sun Z, Harris HM, McCann A, et al. Expanding the biotechnology potential of Lactobacilli through comparative genomics of 213 strains and associated genera[J]. Nat Commun, 2015, 6: 8322. DOI: 10.1038/ncomms9322

    [57]

    Gao J, Li Y, Wan Y, et al. A novel postbiotic from Lactobacillus rhamnosus GG with a beneficial effect on intestinal barrier function[J]. Front Microbiol, 2019, 10: 477. DOI: 10.3389/fmicb.2019.00477

    [58]

    Morita N, Umemoto E, Fujita S, et al. GPR31-dependent dendrite protrusion of intestinal CX3CR1+ cells by bacterial metabolites[J]. Nature, 2019, 566: 110-114. DOI: 10.1038/s41586-019-0884-1

    [59]

    Mullish BH, McDonald JA, Pechlivanis A, et al. Microbial bile salt hydrolases mediate the efficacy of faecal microbiota transplant in the treatment of recurrent Clostridioides difficile infection[J]. Gut, 2019, 68: 1791-1800. DOI: 10.1136/gutjnl-2018-317842

    [60]

    Engevik MA, Luck B, Visuthranukul C, et al. Human-derived Bifidobacterium dentium modulates the mammalian serotonergic system and gut-brain axis[J]. Cell Mol Gastroenterol Hepatol, 2021, 11: 221-248. DOI: 10.1016/j.jcmgh.2020.08.002

    [61]

    Canducci F, Armuzzi A, Cremonini F, et al. A lyophilized and inactivated culture of Lactobacillus acidophilus increases Helicobacter pylori eradication rates[J]. Aliment Pharmacol Ther, 2000, 14: 1625-1629. DOI: 10.1046/j.1365-2036.2000.00885.x

    [62]

    Mehling H, Busjahn A. Non-Viable Lactobacillus reuteri DSMZ 17648 (PylopassTM) as a New Approach to Helicobacter pylori Control in Humans[J]. Nutrients, 2013, 5: 3062-3073. DOI: 10.3390/nu5083062

    [63]

    Mullish BH, McDonald JAK, Pechlivanis A, et al. Micro-bial bile salt hydrolases mediate the efficacy of faecal microbiota transplant in the treatment of recurrent < em > Clostridioides difficile infection[J]. Gut, 2019, 68: 1791-1800. DOI: 10.1136/gutjnl-2018-317842

    [64]

    Andresen V, Gschossmann J, Layer P. Heat-inactivated Bifidobacterium bifidum MIMBb75 (SYN-HI-001) in the treatment of irritable bowel syndrome: a multicentre, randomised, double-blind, placebo-controlled clinical trial[J]. Lancet Gastroenterol Hepatol, 2020, 5: 658-666. DOI: 10.1016/S2468-1253(20)30056-X

    [65]

    Facchin S, Vitulo N, Calgaro M, et al. Microbiota changes induced by microencapsulated sodium butyrate in patients with inflammatory bowel disease[J]. Neurogastroenterol Motil, 2020, 32: e13914.

  • 期刊类型引用(1)

    1. 毛慧. 彩超检测血流动力学指标对肝细胞癌合并门静脉高压患者术后复发的影响. 影像研究与医学应用. 2024(15): 43-45 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  4117
  • HTML全文浏览量:  1265
  • PDF下载量:  279
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-04-13
  • 录用日期:  2022-07-20
  • 网络出版日期:  2022-08-15
  • 刊出日期:  2022-09-29

目录

/

返回文章
返回
x 关闭 永久关闭