Characteristics of Gut Microbiota and Their Association with Lymphocyte Subsets and Disease Activity in Ankylosing Spondylitis
-
摘要:目的 探究强直性脊柱炎(ankylosing spondylitis, AS)患者肠道菌群变化特征及其与疾病活动度、外周血淋巴细胞亚群的关系。方法 本研究为回顾性分析。研究对象为2019年12月至2020年6月山西医科大学第二医院住院治疗的AS患者及性别、年龄与之相匹配的健康人群。收集两组肠道菌群生物信息学分析结果以及AS患者外周血淋巴细胞亚群和疾病活动度指标。比较两组肠道菌群差异,并采用Spearman相关法分析AS患者肠道菌群与疾病活动度、外周血淋巴细胞亚群的相关性。结果 共入选符合纳入和排除标准的AS患者62例(低、高、极高疾病活动度分别为11例、26例、25例),健康人群62名。α多样性分析显示,AS患者肠道菌群Chao1指数和ACE指数均低于健康人群(P均<0.05);β多样性分析显示,两组菌群结构存在差异(P<0.01)。在肠道微生态构成分析中,发现两组样本肠道菌群优势菌门均以厚壁菌门、拟杆菌门、变形菌门为主,但二者在门和属水平上多种菌群的相对丰度存在差异。在Stamp差异菌群分析中,AS患者在门、属水平亦显示出不同于健康人群的特征:在门水平上,AS患者变形菌门、髌骨细菌门等菌群的相对丰度升高(P均<0.05),厚壁菌门、梭杆菌门等菌群的相对丰度降低(P均<0.05);在属水平上,AS患者大肠杆菌志贺菌属、克雷伯氏菌属、肠球菌属等菌群的相对丰度升高(P均<0.05),普雷沃氏菌属、粪杆菌属等菌群的相对丰度降低(P均<0.05)。Spearman相关性分析表明,AS患者粪杆菌属、瘤胃球菌属及克雷伯氏菌属等菌属的相对丰度与疾病活动度或其相关指标呈正相关(P均<0.05);阿加杆菌属的相对丰度与T细胞(r=0.302,P=0.017)、CD4+T细胞(r=0.310,P=0.014)、B细胞(r=0.292,P=0.021)、Th2细胞(r=0.429,P<0.001)、Th17细胞(r=0.288,P=0.023)水平,链球菌属的相对丰度与B细胞水平(r=0.270,P=0.034),普雷沃氏菌属的相对丰度与Th1细胞(r=0.279,P=0.028)、Th17细胞(r=0.262,P=0.040)水平,CAG-352菌属的相对丰度与Th1细胞水平(r=0.283,P=0.030)均呈正相关;大肠杆菌志贺菌属的相对丰度与Th2细胞水平(r=-0.261,P=0.040),其他肠杆菌科细菌属的相对丰度与CD4+T细胞水平(r=-0.255,P=0.046)均呈负相关。结论 AS患者肠道菌群多样性降低,致病菌表达增多,且与外周血淋巴细胞亚群和疾病活动度具有相关性,可能参与了AS的发生与发展。Abstract:Objective To investigate the characteristics of gut microbiome and their associations with lymphocyte subsets and disease activity in patients with ankylosing spondylitis (AS).Methods This study was a retrospective analysis. The subjects of the study were AS patients who were hospitalized in the Second Hospital of Shanxi Medical University from December 2019 to June 2020, as well as gender- and age-matched healthy controls (HCs). The fecal samples were collected, and the V3-V4 variable regions of 16S rRNA gene of gut microbiome were sequenced for bioinformatics analysis. Peripheral venous blood was collected from AS patients to determine peripheral blood lymphocyte subsets and disease activity indicators. Spearman correlation test was used to analyze the correlations between the relative abundances of gut microbiota and peripheral blood lymphocyte subsets as well as disease activity in AS patients.Results A total of 62 AS patients (11 with low disease activity, 26 with high disease activity, and 25 with extremely high disease activity) and 62 healthy people who met the inclusion and exclusion criteria were enrolled. As for α-diversity, ACE and Chao1 indices were lower in AS than in HCs(P < 0.05). Bray curtis distance-based β-diversity analysis revealed significant difference in the microbial community between AS and HCs (P < 0.01). As for the composition of the gut microbiome, Firmicutes, Bacteroidetes, and Proteobacteria were the dominant phyla in the gut microbiota of both groups, but there were differences in the abundance of various bacteria at the phylum and genus levels. In Stamp analysis, fecal microbial communities in AS differed significantly from those in HCs, which were characterized by higher abundances of phylum Proteobacteria and Patescibacteria(all P < 0.05) and a lower abundance of phylum Firmicutes and Fusobacteriota (all P < 0.05). At the genus level, the abundances of Escherichia-Shigella, Klebsiella and Enterococcus were increased while those of Prevotella and Faecalibacterium were decreased in AS patients compared to HCs(all P < 0.05). Spearman correlation analysis showed that the relative abundances of Faecalibacterium, Ruminococcus and Klebsiella in AS patients were significantly positively correlated with disease activity or its related indicators(all P < 0.05). There were positive correlations between Agathobacter and T cell (r=0.302, P=0.017), CD4+T cell (r=0.310, P=0.014), B cell (r=0.292, P=0.021), Th2 cell (r=0.429, P < 0.001), Th17 cell (r=0.288, P=0.023), Streptococcus and B cell (r=0.270, P=0.034), Prevotella and Th1 cell (r=0.279, P=0.028), Th17 cell (r=0.262, P=0.040), CAG-352 and Th1 cell (r=0.283, P=0.030). There were negative correlations between Escherichia-Shigella and Th2 cell(r=-0.261, P=0.040), other Enterobacteriaceae and CD4+T cell (r=-0.255, P=0.046).Conclusions The diversity of gut microbiota is reduced in AS patients. The abundance of pathogenic bacteria in AS patients is increased, which is correlated with changes in peripheral blood lymphocyte subsets and disease activity. Dysbiosis may be involved in the occurrence and development of AS.
-
Keywords:
- ankylosing spondylitis /
- gut microbiota /
- lymphocyte subsets /
- immune system diseases
-
我打算以这样一个朴素的标题,来开启这篇文字记录。这是个平淡如水的故事,这里没有抵御病魔的奇迹,没有视死如归的释然,却充斥着想要活下去的深切期望。
第一次见到H先生是在内科病房。当时他60岁,因为“频繁呕吐隔夜宿食”就诊,超声检查发现上腹部大包块,患者精神状态很好,很乐观,说话不疾不徐,神色、语气中还隐藏着细微的孩子气,让人印象深刻。住院期间,他买了一本《协和医事》捧在手里读。窗外是老协和建筑群的飞檐走壁,他坐在窗前看书,像一个从历史中走出来的人。尽管心态平和,但H先生的病情却进展得很快。他无法进食,呕吐愈加频繁,却坚决不肯放置胃管,仿佛置入胃管就宣判了他对疾病的妥协。直到某一天,他虚弱到只能卧床,我下决心严肃地对他说,你的消化道已经完全堵住了,连水都下不去,胃管可以帮助到你。H先生终于同意了,胃管置入后,很快引出500 mL胃液,随后加强肠外营养,他的感受好多了,又开始在病房里逍遥踱步。有一次值夜班,我和另一位值班医师点了丰盛的饭菜,他在外面探头探脑,然后坐在我们旁边搭讪,说你们吃得真香啊,可惜我一口都吃不了。然后,跟我们畅谈老北京的美食,说得自己恨不得口水都淌下来。
H先生的病理结果回报是“弥漫性大B细胞淋巴瘤”,主要病灶是腹部的大包块,造成了消化道梗阻症状。弥漫性大B细胞淋巴瘤属于最常见的淋巴瘤,这种淋巴瘤对化疗反应较好,具有相当高的治愈率。标准化疗3天后,肿瘤体积缩小了,H先生的消化道也通畅了,可以恢复进食,他特别高兴。他的家人们都来探望,一大家子兄弟姐妹,他是最小的一个。他很骄傲地向家人们介绍我:“这是我的主管医师王大夫,她的医术很棒,我会痊愈的。”那时我正处于工作的低谷状态,有点职业耗竭。积极鼓励患者本应是我的职责所在,此时患者相信我能治愈他的疾病,这种全然的信任同时也给予了我莫大的欣慰和力量。
可惜好景不长,H先生的肿瘤在8程化疗后卷土重来,他仅短暂品尝了食物的美味,再次陷入消化道梗阻。我们换了二线治疗方案,这次副作用太强,H先生吃了很多苦头才完成治疗,但肿瘤丝毫未缩小。我看着他逐渐从乐观、开朗变得日益焦躁。疾病最可怕的地方是在你面前一点点地把一个乐观开朗的人拆解,不仅从生理层面,更是从心理层面。
他开始执着于搜寻最前沿的抗癌知识,跟我探讨最新的前沿治疗方法。5年前,淋巴瘤领域的小分子靶向药物、单抗、双抗还不像现在这样如雨后春笋般日益涌现,我内心很清楚治疗已陷入绝境,却不知如何向他交代。患者病情完全缓解是医生最闪耀的勋章,而作为跟肿瘤战斗的医生,我总希望自己可以一直摆出胜利者的姿态。老病患带着疾病缓解的化验结果来到门诊,诊室的气氛会立刻变得生动活泼起来。我们从心底里抵触没有变化、甚至还进一步增大的肿瘤,这不仅让患者和家属崩溃,也让医生感到失控。
我也在潜意识里选择了逃避,觉得无法再帮助到H先生。他一直辗转于全国各大医院求医问药。突然有一天,他联系我询问借病理切片的流程,由于当时工作太忙,未能帮助到他。后来,很长时间再也没有他的相关消息。忙碌的间隙,我有时会想起他,可能参与了不错的临床试验,或寻求到一味偏方,病情得到了有效控制……又过了许久,一位同事无意中告诉我,H先生在我们医院去世了。听到这个消息,我很震惊,立即登录病案系统查看他的最新病历。病案的文字描述是如此客观、冷静而中立——他带着一丝绝望和孤勇去外地求助更前沿的细胞治疗,却因为身体条件所限,没能入组那个最前沿的研究。肿瘤导致H先生急性上消化道大出血,由于大量呕血,逐步出现失血性休克而去世。在这字里行间,我读出了他内心深处的痛苦与不甘,不知道当时H先生怀着怎样的心情去面对他生命中的最后一刻,这些文字没有、也无法记录。
我的内心充满了自责:当我没有给予他帮助的时候,他是否觉得后面的路更加冰冷和黑暗。这件事也成为我无力化解的心结。2年后,北京协和医院成立了缓和医疗中心,我也加入了缓和医疗会诊群。在会诊群里,各专科医生针对终末期患者提出需求,宁晓红主任团队总是耐心、及时为患者会诊。作为临床医生,我第一次全面了解了缓和医疗:这是临床医学发展的一个新分支,承认现代医疗仍然存在天花板,当高强度的治疗不再有效,反而会给患者带来伤害、影响其生活质量时,医生仍然可以通过缓和医疗为患者提供帮助,医疗不再以治愈疾病为目的,而是让患者没有痛苦、平稳地渡过生命的临终阶段。
缓和医疗团队的建立者宁晓红老师听我讲述了H先生的故事后,她关切的眼神、感同深受的表情让我意识到H先生的经历是被人在意的,他存在的意义并未随着生命的流逝而消失。宁老师让我意识到,即便医生没有治愈肿瘤的手段,仍可以帮助到患者,不必因为惧怕面对自己的无力感和患者失望的眼神而去逃避或把患者推开。我们可以如实而坦然地告诉患者,我们没有办法了,但是我们可以好好计划一下接下来的生命安排。我们可以用缓和医疗的手段,帮助患者解决终末期病情带来的不适,同样可以帮助无所适从的家属,让一家人重新带着尊严去面对死亡这件大事,做好最后的告别。
缓和医疗是对患者的治疗,也是对医生的救赎。人生中总有一些时刻会触动你的心灵,留下深刻的情感体验,如看到秋风吹落黄叶,亦或看到雨后天空泛出湛蓝……我们想竭尽全力去医治疾病,也想遇见并安慰那些有趣而深刻的灵魂。即便在备选治疗极为丰富的今天,医生依然无法治愈每一位患者,但可以一直帮助和陪伴他们!
作者贡献:宋子怡负责选题设计并撰写论文初稿;张升校、乔军负责实验和数据分析;赵蓉、宋珊、程婷负责数据收集和文献查阅;王彩虹、李小峰负责论文修订。利益冲突:所有作者均声明不存在利益冲突 -
图 2 AS患者与健康人群肠道菌群多样性比较
A.α多样性;B.β多样性
AS:同图 1图 3 基于Stamp分析和t检验的AS患者与健康人群肠道菌群差异图
A.门水平;B.属水平
AS:同图 1 -
[1] Brown MA, Kenna T, Wordsworth BP. Genetics of ankylosing spondylitis-insights into pathogenesis[J]. Nat Rev Rheumatol, 2016, 12: 81-91. DOI: 10.1038/nrrheum.2015.133
[2] Simone D, Al Mossawi MH, Bowness P. Progress in our understanding of the pathogenesis of ankylosing spondylitis[J]. Rheumatology (Oxford), 2018, 57: vi4-vi9. DOI: 10.1093/rheumatology/key001
[3] Zhou C, Zhao H, Xiao XY, et al. Metagenomic profiling of the pro-inflammatory gut microbiota in ankylosing spondylitis[J]. J Autoimmun, 2020, 107: 102360. DOI: 10.1016/j.jaut.2019.102360
[4] Rosenbaum JT, Davey MP. Time for a gut check: evidence for the hypothesis that HLA-B27 predisposes to ankylosing spondylitis by altering the microbiome[J]. Arthritis Rheum, 2011, 63: 3195-3198. DOI: 10.1002/art.30558
[5] Costello ME, Ciccia F, Willner D, et al. Brief report: Intestinal Dysbiosis in Ankylosing Spondylitis[J]. Arthritis Rheumatol, 2015, 67: 686-691. DOI: 10.1002/art.38967
[6] Dominguez-Lopez ML, Burgos-Vargas R, Galicia-Serrano H, et al. IgG antibodies to enterobacteria 60 kDa heat shock proteins in the sera of HLA-B27 positive ankylosing spondylitis patients[J]. Scand J Rheumatol, 2002, 31: 260-265. DOI: 10.1080/030097402760375133
[7] van der Linden S, Valkenburg HA, Cats A. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria[J]. Arthritis Rheum, 1984, 27: 361-368. DOI: 10.1002/art.1780270401
[8] Aranda-Valera IC, Garrido-Castro JL, Ladehesa-Pineda L, et al. How to calculate the ASDAS based on C-reactive protein without individual questions from the BASDAI: The BASDAI-based ASDAS formula[J]. Rheumatology (Oxford), 2020, 59: 1545-1549. DOI: 10.1093/rheumatology/kez480
[9] Lynch SV, Pedersen O. The human intestinal microbiome in health and disease[J]. N Engl J Med, 2016, 375: 2369-2379. DOI: 10.1056/NEJMra1600266
[10] Zhang L, Han R, Zhang X, et al. Fecal microbiota in patients with ankylosing spondylitis: Correlation with dietary factors and disease activity[J]. Clin Chim Acta, 2019, 497: 189-196. DOI: 10.1016/j.cca.2019.07.038
[11] Chen Z, Qi J, Wei Q, et al. Variations in gut microbial profiles in ankylosing spondylitis: disease phenotype-related dysbiosis[J]. Ann Transl Med, 2019, 7: 571. DOI: 10.21037/atm.2019.09.41
[12] Breban M, Tap J, Leboime A, et al. Faecal microbiota study reveals specific dysbiosis in spondyloarthritis[J]. Ann Rheum Dis, 2017, 76: 1614-1622. DOI: 10.1136/annrheumdis-2016-211064
[13] Liu G, Hao Y, Yang Q, et al. The Association of Fecal Microbiota in Ankylosing Spondylitis Cases with C-reactive Protein and Erythrocyte Sedimentation Rate[J]. Mediators Inflamm, 2020, 2020: 8884324.
[14] Ciccia F, Guggino G, Rizzo A, et al. Dysbiosis and zonulin upregulation alter gut epithelial and vascular barriers in patients with ankylosing spondylitis[J]. Ann Rheum Dis, 2017, 76: 1123-1132. DOI: 10.1136/annrheumdis-2016-210000
[15] Asquith M, Sternes PR, Costello ME, et al. HLA Alleles Associated With Risk of Ankylosing Spondylitis and Rheumatoid Arthritis Influence the Gut Microbiome[J]. Arthritis Rheumatol, 2019, 71: 1642-1650. DOI: 10.1002/art.40917
[16] Ebringer A, Ghuloom M. Ankylosing spondylitis, HLA-B27, and klebsiella: cross reactivity and antibody studies[J]. Ann Rheum Dis, 1986, 45: 703-704. DOI: 10.1136/ard.45.8.703
[17] Pedersen SJ, Maksymowych WP. The Pathogenesis of Ankylosing Spondylitis: an Update[J]. Curr Rheumatol Rep, 2019, 21: 58. DOI: 10.1007/s11926-019-0856-3
[18] Antoniou AN, Lenart I, Kriston-Vizi J, et al. Salmonella exploits HLA-B27 and host unfolded protein responses to promote intracellular replication[J]. Ann Rheum Dis, 2019, 78: 74-82. DOI: 10.1136/annrheumdis-2018-213532
[19] Clegg DO, Reda DJ, Abdellatif M. Comparison of sulfasalazine and placebo for the treatment of axial and peripheral articular manifestations of the seronegative spondylarthropathies: a Department of Veterans Affairs coopera-tive study[J]. Arthritis Rheum, 1999, 42: 2325-2329. DOI: 10.1002/1529-0131(199911)42:11<2325::AID-ANR10>3.0.CO;2-C
[20] Liu B, Yang L, Cui Z, et al. Anti-TNF-α therapy alters the gut microbiota in proteoglycan-induced ankylosing spondylitis in mice[J]. Microbiologyopen, 2019, 8: e927.
[21] Ciccia F, Guggino G, Rizzo A, et al. Type 3 innate lymphoid cells producing IL-17 and IL-22 are expanded in the gut, in the peripheral blood, synovial fluid and bone marrow of patients with ankylosing spondylitis[J]. Ann Rheum Dis, 2015, 74: 1739-1747. DOI: 10.1136/annrheumdis-2014-206323
[22] Chua WJ, Truscott SM, Eickhoff CS, et al. Polyclonal mucosa-associated invariant T cells have unique innate functions in bacterial infection[J]. Infect Immun, 2012, 80: 3256-3267. DOI: 10.1128/IAI.00279-12
[23] Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine[J]. FEMS Microbiol Lett, 2009, 294: 1-8. DOI: 10.1111/j.1574-6968.2009.01514.x
[24] Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T cell development by a commensal bacterium of the intestinal microbiota[J]. Proc Natl Acad Sci U S A, 2010, 107: 12204-12209. DOI: 10.1073/pnas.0909122107
[25] Eastmond CJ, Willshaw HE, Burgess SE, et al. Frequency of faecal Klebsiella aerogenes in patients with ankylosing spondylitis and controls with respect to individual features of the disease[J]. Ann Rheum Dis, 1980, 39: 118-123. DOI: 10.1136/ard.39.2.118
[26] Zhang L, Zhang YJ, Chen J, et al. The association of HLA-B27 and Klebsiella pneumoniae in ankylosing spondylitis: A systematic review[J]. Microb Pathog, 2018, 117: 49-54. DOI: 10.1016/j.micpath.2018.02.020
[27] van Bohemen CG, Grumet FC, Zanen HC. Identification of HLA-B27M1 and -M2 cross-reactive antigens in Klebsiella, Shigella and Yersinia[J]. Immunology, 1984, 52: 607-610.
[28] Ebringer RW, Cawdell DR, Cowling P, et al. Sequential studies in ankylosing spondylitis. Association of Klebsiella pneumoniae with active disease[J]. Ann Rheum Dis, 1978, 37: 146-151. DOI: 10.1136/ard.37.2.146
[29] Poddubnyy D, Haibel H, Listing J, et al. Baseline radiographic damage, elevated acute-phase reactant levels, and cigarette smoking status predict spinal radiographic progres-sion in early axial spondylarthritis[J]. Arthritis Rheum, 2012, 64: 1388-1398. DOI: 10.1002/art.33465
[30] Hall AB, Yassour M, Sauk J, et al. A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients[J]. Genome Med, 2017, 9: 103. DOI: 10.1186/s13073-017-0490-5
[31] Larsen JM. The immune response to Prevotella bacteria in chronic inflammatory disease[J]. Immunology, 2017, 151: 363-374. DOI: 10.1111/imm.12760