妇科肿瘤免疫检查点抑制剂临床应用指南
详细信息Clinical Practice Guidelines for Immune Checkpoint Inhibitor Therapy in Gynecological Tumors
-
摘要: 免疫检查点抑制剂(immune checkpoint inhibitor,ICI)在部分妇科恶性肿瘤患者中显示出一定的临床疗效,目前主要用于晚期和复发性癌经常规治疗失败的患者。在三大妇科恶性肿瘤中,以子宫内膜癌疗效最好,其次是子宫颈癌,卵巢癌疗效最差。对于复发耐药的滋养细胞肿瘤患者应用ICI治疗,部分患者可取得显著疗效。应用ICI治疗,应重视筛选治疗优势人群和合理的疗效评估,早期识别、及时干预免疫治疗相关不良事件。目前ICI单药治疗妇科肿瘤临床疗效有限,联合治疗有望提高其疗效。Abstract: Immune checkpoint inhibitors (ICI) have shown efficacy for some patients with gynecological tumors, which are mainly used to treat persistent, recurrent, or metastatic patients. Immunotherapy with ICI has shown good objective responses and survival benefit in patients with endometrial cancer. However, the rate of response to immunotherapy in patients with ovarian cancer remains modest. Some patients with recurrent or resistant gestational trophoblastic neoplasia benefit from ICI. ICI often has optimal duration of response. Accurately evaluating the indications and responses, recognizing and managing immune-related adverse events are essential to ICI treatment. With regards to ICI, the clinical benefit of monotherapy is limited; however, combinations of ICI with other therapies may have clinical benefit.
-
自人类历史有记录以来,医疗和智能就是我们生存与发展永恒的主题,二者相互促进、密切关联,由此衍生出哲学、科学和今日形形色色的各种技术。追根溯源,西方现代医学、哲学、科学和人工智能等学科和领域,同孕于古希腊文明,共生于文艺复兴,成熟于近代和当代的科学技术。此外,自人工智能研究正式成为一个较为独立的科学领域起,其在医疗中的应用是研发的核心主题。20世纪80年代,人工智能由于专家系统技术而有了历史上的第一个“中兴”时期,而医学领域正是专家系统的主要用武之地,由此产生了著名医用专家系统如MYCIN、DENDRAL、INTERNIST、CADUCEUS等[1]。
事实上,人工智能目前的“复兴”也是基于20世纪40年代维纳、McCulloch和Pitts等人对生物生理和人类大脑的研究,其所归纳形成的“循环因果(circular causality)”和人工神经元网络模型正是今日大数据因果革命和深度学习的思想及理论基础[2-3]。更为重要和有趣的是,引导未来人工智能和智能科技进一步深入发展的知识自动化理念与方法的正式提出,也是源自1987年《首都医学院学报》对美国人工智能专家费根鲍姆在1986年第五届世界医学信息科学大会上所作报告题目之“误译”:把自主知识的英文“AutoKnowledge”翻译成“知识自动化”[4]。我们应该庆幸这一“正确”的误译,不但把知识自动化的历史提前了20余年,且让我们从新的角度反思:为何几乎是智能医学领域最需要的医学知识自动化,其研发反而严重滞后,其配套的基础设施至今依然是不成规模、难以流程化的“碎片”“孤岛”式系统?
回顾西方现代医学的发展,医护工作者和相应学科的“专业分工”是其科学化的关键一步。然而,医疗的专业分工能够达到今日的高效和可靠程度,各类医用机器的引入功不可没。特别是在医用机器人引入之后,“人机分工”己成大局,并进一步成为“专业分工”真正有效、可信的基础和保障。人机分工之后,尽管医学信息化得到了深入和普及,但为了实现医学自动化的需求,我们必须进一步考虑并引入“虚实分工”,利用智能科技和云端资源,推动医学智能化,反过来以此确保医学自动化的成熟、可靠、可信以及普及应用,进而提升人机分工的水平[5-7]。
我们认为,从“专业分工”到“人机分工”,再到“虚实分工”,是智慧医疗发展的必由之路,而虚实分工的关键与核心是引入数字人医生或数字医护工作者,以及相应的虚实互动平行智能医学体系,其本质上是通过虚实分离实现医疗知识自动化的过程(图 1)。这样做的目的,首先是强化生物人医生在整个医疗体系中的核心与指导作用;其次是减少医护人员和患者家庭不必要的工作量与负担,平衡生物人医生、机器人医生和数字人医生之间的关系,有效地从医学小数据中生产出医学大数据,进而从中提炼出针对具体患者病情及场景的“医学智数据(smart data)”;最后,以可持续的方式,实现“6S”的新一代智慧医疗体系,即基于虚实互动的平行健康、平行药物、平行医学、平行医疗、平行医院,实现人类健康系统在物理空间中的安全(Safety)、在信息空间里的安全(Security)、生态的可持续性发展(Sustainability)、个性化优化(Sensitivity)、全面服务(Service)和深度智慧(Smartness)[5-7]。
本文将就新一代智慧医疗系统进行初步讨论,以期面向人民生命健康,共同推进智能医学和智慧医疗的深入发展与应用。
1. 智能医学研究现状与问题
以图像处理为主的疾病诊断智能化是目前智能医学研发的绝对主流[2, 7-9],热点依然是精度和可靠性问题,深度学习和对抗生成是其主要的研究方法和工具。随着深度神经网络构造的不断演化、算法的不断提高和图像数据库的不断扩大,精度将成为非主要问题,特别是相对生物人医生水平而言。然而,依据现代算法的水平,可靠性和稳定性问题依然难以独立解决,人机混合的方式不但可以解决可靠性和稳定性问题,且可显著提高医疗图像识别的精度。综合考虑法律、伦理和人性化,人机混合智能和视觉推理方法应是疾病诊断智能化研究的主要方向。平行医学图像处理和计算知识视觉方法[8-10]是沿此思路发展起来的一种新的医学图像处理方式,可以方便地将医护人员的行为模式、医疗诊断流程和面向患者的可视化工程等涉及人的环节纳入基于图像的诊断过程。
以语言文本分析为主的疾病咨询智能化是人工智能医学研究的另一个重要且日益受到关注的方向,语言交互和自然语言处理(natural language processing,NLP)是其主要方法和工具,已在智能导诊和心理咨询等方面发挥了重要作用。实际上,这一方向的工作不但涉及人工智能的核心技术NLP和正在兴起的脑机接口与人机交互,且与刚刚起步的叙事医学[5-7]、患者健康数据的有效利用及进一步提升息息相关,是改善医疗效率和医患关系的重要手段和创新途径,十分值得关注和投入。
疾病预测与干预智能化和疾病治疗与医学服务智能化是智能医学研究的2个重要领域,但难度相对较大,且很难靠智能算法单独解决,必须有医学知识和专家的深度介入。在预测和干预方面,主要方法是较为传统的医学信息检索、信号处理、大数据分析与模型预测,以及新兴的知识图谱方法。在治疗和服务方面,主要手段是NLP、人机交互、医用机器人、机器学习和增强现实等。
人工智能在卫生健康管理智能化领域的研究正在引起广泛关注,且在引入NLP、社会计算、机器学习、知识图谱、机器人过程自动化等方法与技术后,取得了显著成果[7]。另一个相对被忽略但十分重要的方向是人工智能在健康及医学教育方面的应用。尽管中外许多创业公司和跨国企业已大力开展医学教科书和论文的知识图谱构建,但相关教学与示教应用仍然滞后,应引起关注。人工智能在健康、医学、医疗教育和管理方面的应用极其重要,也是智能科技易真正发挥效益的地方,但利益冲突和体制惯性是其相对落后的重要原因。
总之,尽管近年来人工智能在医学领域取得了重要进展,但在数据质量、监管与评估、成果转化与商业化、法规与伦理等方面依然存在诸多问题和挑战。宏观上看,目前研究涉及的医学知识和医疗流程并不深入,人和社会因素考虑不足,在本质上难以整体处理医学所面临的科学性、人文性、社会性交融的复杂问题,必须集跨学科医学、复杂性医学和系统化智能医学为一体,在传统医学与现代医学的基础上,创立新一代的智慧医疗。结合平行智能方法,沿此方向的一些初步研讨可见文献[5-10]。
2. 智慧医疗:学科交叉、复杂性科学与系统智能科技
被称为西方“现代医学之父”的奥斯勒曾言:“行医是一种以科学为基础的艺术。”这句话在一定程度上点破了医学的本质:医学,特别是医疗,仅有科学还不够,人们必须同时面对医学的科学性、人文性和社会性,以及这些属性共同纠缠所产生的不定性(Uncertainty)、多样性(Diversity)、复杂性(Complexity),即UDC。智慧医疗的历史使命就是利用智能科技创出一条新路,化UDC为保障人类生命健康的AFC能力,即针对各种疾病处理的灵捷(Agility)、向具体医疗任务聚焦(Focus)、向健康目标收敛(Convergence)的能力。为此,我们必须融跨学科医学、复杂性医学和系统智能医学为一体,集生物人医生、机器人医生、数字人医生于一身,开创医学发展新的历史阶段。
为何采取这一途径?源头即是医学问题的复杂性和当前已经出现的一些难题。人类经过长期的探索和努力,从宗教或经验式的传统医学启航,终于使现代医学成为现代科学的核心之一,特别是在基因信息学和分子生物学的推动下,正向集防御(Preventive)、主动(Proactive)、精准(Precision)和个性化(Personalized)为一体的“P4”医学迈进。然而,在医学的科学进程中,技术至上的思潮涌现,甚至愈演愈烈,致使有些地方的医疗实践严重偏离医学的人文和社会属性,特别是对不断重复的LUC(law of unintended consequences)现象视而不见。这些问题充分表明,医学科学与技术的发展,只能回答可否做到,但依然无法真正回答需要做什么的问题。这就是必须融合复杂性科学、系统化智能科技和交叉学科方法构建智慧医疗的根本原因。
针对医学科学属性中的还原困境和循环困境,医学人文属性中价值的主观性、效果的心理性和应用的有界性,医学社会属性中发展的资本性、伦理性和一致性等一系列主要问题,除现行的方法与实践外,新一代智慧医疗应考虑下列研究课题:(1)基于复杂性科学的复杂性医学;(2)基于交叉学科的跨学科医学;(3)基于系统工程的系统智能医学或元体系智能医学。
总之,复杂性医学的目标是利用复杂性科学的研究,将复杂性任务交给虚拟的人工系统解决,而医学工作者的工作必须尽可能简单化,最终希望人仅处理高心智却“简单”的人文性和社会性任务。跨学科医学的任务是建设新的医学基础设施,培养新的医学范式和医疗文化,实现交叉学科医学知识自动化,其目的依然是减轻医生和患者的负担,提高医疗效益。系统智能医学希望利用数据智能和智能科技,通过人机结合虚实平行的方式,将复杂性医学和跨学科医学的理念、方法、技术、流程付诸实践,成为可信、可靠、易用、高效的分布式自主自动化医疗组织和系统,变革现行医学和健康体系,更多更好地服务人类。
3. 平行医疗和平行医院体系
所谓平行医疗,就是利用平行系统和平行智能方法研究与医学相关问题的方法与体系,主要由基于人工社会(artificial societies)+计算实验(computa-tional experiments)+平行执行(parallel execution),即ACP方法的医疗流程和平行医学框架平台组成。目前风行的“数字孪生”是平行系统的简单例子,而元宇宙是平行系统较复杂的情况。首先,需要构建与实际现行的医学研究和医学服务对应的人工或虚拟医学研究步骤和医学服务过程模型,即将其软件化定义或数字化孪生。一般而言,一个或多个实际医学系统(实际系统)可以对应于一个或多个人工医学系统(人工系统),一是完成医学医疗模型的形式化和知识表示,二是将模型的功能从传统的分析转化为数据生成。在人工系统的基础上,开展医学的计算实验,将具体问题的“小数据”,通过这一实验过程和对抗生成等方法变成“大数据”,再利用机器学习和各种人工智能方法凝练出针对具体问题的精准知识,即“智数据”。医学的最终任务是解决患者的问题,因此,还需要在人工系统和计算实验的基础上实施平行执行:实际医疗系统与对应的人工医疗系统各行一步,然后交换其结果并进行比较,根据差别进行虚实反馈,实现虚实闭环,如此反复进行,利用虚实平行互动,形成虚实之间的双反馈和双闭环医疗系统。
平行医学的基本思路为:利用虚实的相互作用,由“单一世界”转变成“多重世界”,完成对实际医疗过程的管理与控制,包括对有关医学人员的培训和系统学习,对相关医学决策和行为的实验与评估,使过去“摸着石头过河”的实践方式升华为科学化、系统化、精细化水平的科学管理,并能够以可计算、可实验、可验证的方式不断改善、不断提高。
平行医学系统的基本框架主要由实际医学系统和人工医学系统所构成的平行系统,以及学习与培训、实验与评估、管理与控制3个功能平台组成(图 2)。利用平行系统的虚实互动和平行驱动,对虚实之间的行为进行交换、对比和分析,完成对各自未来状况的借鉴、预估和优化,相应地调节各自的运行管理与控制方式,实现相关人员和算法的学习与培训、相关决策和行为的实验与评估、相关过程与服务的管理与控制。
尽管在科学上已取得了许多重大进展,但医学在本质上还是一门实验学科,依然按照“吃一堑,长一智”的方式进化发展。在一定意义下,平行医学就是利用信息和智能技术,把在物理世界的“吃一堑”,换成在知识虚拟世界的“吃一堑”,把在虚拟世界认知上的“长一智”,换成在物理世界实践上的“长一智”,特别是虚拟的“吃一堑”可以通过知识自动化和数字人医生的形式大范围地快速进行实验,把医学的“小数据”变成“大数据”,再凝练成“智数据”,实现低成本、高效益、广智慧。目前,平行系统和平行智能的方法已在军事、国防、经济、制造、教育等领域得到广泛的应用[5-10],并在痛风、皮肤、眼科、手术、制药和医学图像等方面开始了一系列的探讨[5-10],有待进一步开展更加深入细致的系统化研究与实践。
显然,针对平行医疗技术,现存的医院管理与服务体系也应进行相应的变革,其关键是引入数字人医生的理念和方法,实现医疗服务的知识自动化。因此,医院本身也必须虚实一体,将目前的医院信息系统进一步数字化、平行化和智慧化。此外,医院之间也应形成一种新型的合作关系,在“孤岛”和保护隐私的前提下,实现共同提高、共享服务。联邦医院体系就是面向这一方向的一种新的技术[5]。其核心就是利用区块链和DAO技术,以及面向人类的编程(HOP)和操作系统(HOOS),特别是引入数字人的数字人格与相应人类性格的适配算法,通过共识算法和联邦控制实现联邦数据,进而由智能合约和联邦管理实现联邦服务和联邦智能,构成智慧医院体系,走向真正集预防、主动、精准、个性化于一体的平行系统智能健康与医疗,即“P5”医疗。
4. 展望
毕宝德(Peabody, 1881—1927)是西方现代医学史上的传奇医生,他的传世名言是:“临床医生的一个基本品质就是人道精神,因为照顾好患者的秘诀就在照顾的过程之中(One of the essential qualities of the clinician is interest in humanity, for the secret of the care of the patient is in caring for the patient)”。一百多年前,正是毕宝德帮助洛克菲勒基金会制定了创立北京协和医学院和医院的决策和规划。为了使“照顾好患者”从一门艺术成为一门科学,从而更好地救助患者,毕宝德引领美国医院和医学院发起从传统向近代科学变革的运动,在医院中引入实验室探索和案例研究制度,推动医生从传统匠人转为研究型学者。彼时正值传统医学向现代医学过渡的关键时期。他不但在哈佛医学院和波士顿城市医院推行并实践其理念,还力推将其纳入北京协和医学院和医院的建设方案和实施之中,认为“协和不但在人员、设备和设制上属世界一流,而且其选择和照顾患者的方法、医护人员学习与交流的方式尤具特色,可与当时世界上最先进的医学院在科学医疗前沿携手共进” [11]。
一百年后的今天,医学科技发生了天翻地覆的变化,但毕宝德“照顾好患者”的信念依然是医学的起源和目标。在巨大的科技进步之后,人们发现我们必须综合考虑医学的科技性、人文性和社会性,否则将无法“照顾好患者”。这正是以人工智能和智能科技为基础的智慧医疗的历史使命和动力:从复杂性科学、多学科交叉和组织系统化智能的角度,统筹人类健康的科学、人文、社会等属性,不但推动从“P4”至“P5”的精确智能医疗进程,还要加速实现“6S”的新一代人类智慧健康体系。
利益冲突:共识制订工作组所有参与人员均声明不存在利益冲突执笔专家组:
孔北华,刘继红,周云,高庆蕾,宋坤,王登凤,陈丽莉,蒋芳,张国楠,向阳,谢幸,马丁编审专家组 (以姓氏笔画为序):
万小平(上海市第一妇婴保健院),马丁(华中科技大学同济医学院附属同济医院),王丹波(辽宁省肿瘤医院),王世宣(华中科技大学同济医学院附属同济医院),王建六(北京大学人民医院),王登凤(四川省肿瘤医院/四川省第二人民医院),王新宇(浙江大学医学院附属妇产科医院),孔北华(山东大学齐鲁医院),曲芃芃(天津市中心妇产科医院),吕卫国(浙江大学医学院附属妇产科医院),向阳(中国医学科学院北京协和医院),刘继红(中山大学肿瘤防治中心),杨兴升(山东大学齐鲁医院),杨佳欣(中国医学科学院北京协和医院),吴小华(复旦大学附属肿瘤医院),吴令英(中国医学科学院肿瘤医院),汪辉(浙江大学医学院附属妇产科医院),沈铿(中国医学科学院北京协和医院),沈源明(浙江大学医学院附属妇产科医院),宋坤(山东大学齐鲁医院),张国楠(四川省肿瘤医院/四川省第二人民医院),陈刚(华中科技大学同济医学院附属同济医院),陈丽莉(浙江大学医学院附属妇产科医院),周云(中山大学肿瘤防治中心),赵霞(四川大学华西第二医院),哈春芳(宁夏医科大学/宁夏医科大学总医院),姜洁(山东大学齐鲁医院),徐丛剑(复旦大学附属妇产科医院),高庆蕾(华中科技大学同济医学院附属同济医院),高雨农(北京大学肿瘤医院),郭瑞霞(郑州大学第一附属医院),崔恒(北京大学人民医院),康山(河北医科大学第四医院),梁志清(陆军军医大学第一附属医院),蒋芳(中国医学科学院北京协和医院),程文俊(南京医科大学第一附属医院/江苏省人民医院),谢幸(浙江大学医学院附属妇产科医院) -
表 1 推荐级别及其代表意义
推荐级别 代表意义 1类 基于高级别临床研究证据,专家意见高度一致 2A类 基于低级别临床研究证据,专家意见高度一致;或基于高级别临床研究证据,专家意见基本一致 2B类 基于低级别临床研究证据,专家意见基本一致 3类 不论基于何种级别临床研究证据,专家意见明显分歧 表 2 全球已批准上市的免疫检查点抑制剂(截至2021年9月1日)
中文名称 英文通用名 免疫检查点 首次获批时间 伊匹木单抗 ipilimumab CTLA-4 2011年(美国FDA) 2013年(欧盟EMA) 2021年(中国NMPA) 帕博利珠单抗 pembrolizumab PD-1 2014年(美国FDA) 2015年(欧盟EMA) 2018年(中国NMPA) 纳武利尤单抗 nivolumab PD-1 2014年(美国FDA) 2017年(欧盟EMA) 2018年(中国NMPA) 阿替利珠单抗 atezolizumab PD-L1 2016年(美国FDA) 2019年(欧盟EMA) 2020年(中国NMPA) 度伐利尤单抗 durvalumab PD-L1 2017年(美国FDA) 2019年(中国NMPA) 2020年(欧盟EMA) 阿维鲁单抗 avelumab PD-L1 2017年(美国FDA) 2017年(欧盟EMA) 特瑞普利单抗 toripalimab PD-1 2018年(中国NMPA) 信迪利单抗 sintilimab PD-1 2018年(中国NMPA) 西米普利单抗 cemiplimab PD-1 2018年(美国FDA) 2018年(欧盟EMA) 卡瑞利珠单抗 camrelizumab PD-1 2019年(中国NMPA) 替雷利珠单抗 tiselizumab PD-1 2019年(中国NMPA) ― dostarlimab-gxly PD-1 2021年(美国FDA) 2021年(欧盟EMA) 派安普利单抗 penpulimab PD-1 2021年(中国NMPA) 赛帕利单抗 zimberelimab PD-1 2021年(中国NMPA) CTLA-4:细胞毒性T淋巴细胞相关抗原4;PD-1:程序性死亡[蛋白]-1;PD-L1:程序性死亡[蛋白]配体-1;FDA:食品药品监督管理局;EMA:欧洲药品管理局;NMPA:国家药品监督管理局 表 3 PD-1/PD-L1抑制剂单药治疗晚期/复发性子宫内膜癌的研究
药物名称 研究(注册号) 试验期别 研究分组 样本量(n) 生物标志物(表达) ORR(%,95% CI) 帕博利珠单抗 KEYNOTE-016 (NCT01876511)[26] Ⅱ期 单臂 15 dMMR 53 KEYNOTE-158 (NCT02628067)[27] Ⅱ期 单臂 49 MSI-H/dMMR 57.1(42.2~71.2) KEYNOTE-028 (NCT02054806)[29] Ⅰb期 单臂 24 PD-L1 13(2.8~33.6) KEYNOTE-158 (NCT02628067)[28] Ⅱ期 单臂 82 TMB(15例TMB-H、67例非TMB-H) TMB-H:46.7非TMB-H:6.0 纳武利尤单抗 NCI-MATCH Z1D亚组(NCT02465060)[30] Ⅱ期 单臂 13 dMMR 45.4 JapicCTI-1632121*[34] Ⅱ期 单臂 22 PD-L1(8例阳性、14例阴性)/MSI(共检测8例,2例MSI-H、6例MSS) 总体:23(11~38)
PD-L1阳性:25(7~54)
PD-L1阴性:21(8~42)
MSI-H:100(32~100)
MSS:0(0~32)dostarlimab-gxly GARNET(NCT02715284)[31] Ⅰ期 单臂;
队列dMMR
队列pMMRdMMR:103
pMMR:142MMR 队列A1:44.7(34.9~54.8)
队列A2:13.4(8.3~20.1)阿替利珠单抗 NCT01375842#[35] Ⅰa期 单臂 15 PD-L1(5例阳性、10例阴性)/MSI(可评估8例,1例MSI-H、7例MSS) 13;PD-L1阳性者:40 度伐利尤单抗 PHAEDRA/ANZGOG1601 (ACTRN12617000106336)[32] Ⅱ期 单臂;
队列dMMR
队列pMMR71
dMMR:36
pMMR:35MMR dMMR:47(32~63)
pMMR:3(1~15)阿维鲁单抗 NCT02912572[33] Ⅱ期 单臂;
队列dMMR
队列pMMRdMMR:16
pMMR:15MMR dMMR:26.7 (7.8~55.1)
pMMR:6.3(0.2~30.2)药物名称 DCR(%, 95% CI) mDOR(月, 95% CI) mPFS(月, 95% CI) mOS(月, 95% CI) 帕博利珠单抗 NA NA NA NA NA NR(2.9~27.0+) 25.7(4.9~NR) NR(27.2~NR) 26 3例PR分别为63.7+周、64.7+周、64.3周
SD者为24.6周(13.1~ 24.6)1.8(1.6~2.7) NR(4.3~NR) NA NA NA NA 纳武利尤单抗 NA NA NA NA 总体:68(52~81)
PD-L1阳性:NA
PD-L1阴性:NA
MSI-H:NA
MSS:NA总体:NE
PD-L1阳性:NA
PD-L1阴性:NA MSI-H:NA
MSS:NA总体:3.4(2.0~5.4)
PD-L1阳性:3.5(1.5~5.9)
PD-L1阴性:3.3(2.0~9.1)
MSI-H:NE
MSS:2.2(1.4~4.0)总体:8.7(7.1~NE)
PD-L1阳性:NA
PD-L1阴性:NA
MSI-H:NA
MSS:NAdostarlimab-gxly 队列A1:57.3(47.2~67.0)
队列A2:35.2(27.4~43.7)队列A1:NR
队列A2:NRNA NA 阿替利珠单抗 NA 2例PR者:7.3个月、8.1+个月 1.7(0.6~11+) 9.6(0.6~11.8+) 度伐利尤单抗 NA NA dMMR:5.5
pMMR:1.8dMMR:NR
pMMR:11.5阿维鲁单抗 NA NA dMMR:4.4(1.7~NR)
pMMR:1.9(1.6~2.8)dMMR:NR
pMMR:6.6(2.0~10.2)*该研究为80%CI,PD-L1阳性:TPS≥1%;#PD-L1阳性,CPS≥5分;PD-1、PD-L1:同表 2;ORR:客观缓解率;DCR:疾病控制率;mDOR:中位缓解持续时间;mPFS:中位无进展生存期;mOS:中位总生存期;dMMR:错配修复缺陷;MSI-H:微卫星高度不稳定性;PR:部分缓解;SD:疾病稳定;TMB:肿瘤突变负荷;TMB-H:高肿瘤突变负荷;MSI:微卫星不稳定性;MSS:微卫星稳定性;pMMR:错配修复正常;MMR:错配修复;TPS:肿瘤细胞阳性比例分数;CPS:联合阳性评分;NA:无相关数据;NE:未评估;NR:未达到 表 4 PD-1/PD-L1抑制剂单药治疗晚期/复发性子宫颈癌的研究
药物名称 研究(注册号) 试验期别 研究分组 样本量(n) 生物标志物(表达) ORR(%,95% CI) 帕博利珠单抗 KEYNOTE-028(NCT02054806)[44] Ⅰb期 单臂 24 PD-L1阳性 17(5~37) KEYNOTE-158(NCT02628067)[45] Ⅱ期 单臂 98 PD-L1(82例阳性) 总体:12.2(6.5~20.4)
PD-L1阳性:14.6(7.8~24.2)
PD-L1阴性:0(0~21.8)纳武利尤单抗 JapicCTI-1632121*#[34] Ⅱ期 单臂 20 PD-L1(15例阳性、5例阴性)/MSI(共检测8例,0例MSI-H、8例MSS) 总体:25(13~41)
PD-L1阳性:33(17~53)
PD-L1阴性:0(0~37)
MSI-H:NA
MSS:25(7~54)CHECKMATE358(NCT02488759)#[46] Ⅰ/Ⅱ期 单臂 19 PD-L1(16例可评估,10例阳性、6例阴性) 26.3(9.1~51.2) NRG-GY002(NCT02257528)#[47] Ⅱ期 单臂 25 PD-L1(22例可评估,14例阳性、8例阴性) 4.0(0.4~22.9) 赛帕利单抗 NCT03972722[48] Ⅱ期 单臂 41 PD-L1阳性 26.83(14.22~42.94) 药物名称 DCR(%,95% CI) mDOR(月,95% CI) mPFS(月,95% CI) mOS(月,95% CI) 帕博利珠单抗 30 5.4(4.1~7.5) 2(2~3) 11(4~15) 总体:30.6(21.7~40.7)
PD-L1阳性:32.9(22.9~44.2)
PD-L1阴性:20(4.3~48.1)总体:NR
PD-L1阳性:NR
PD-L1阴性:NR总体:2.1(2.0~2.2)
PD-L1阳性:2.1(2.1~2.3)
PD-L1阴性:NA总体:9.4(7.7~13.1)
PD-L1阳性:11(9.1~14.1)
PD-L1阴性:NA纳武利尤单抗 总体:75(59~87)
PD-L1阳性:NA
PD-L1阴性:NA
MSI-H:NA
MSS:NA总体:NE(3.0~NE)
PD-L1阳性:NA
PD-L1阴性:NA
MSI-H:NA
MSS:NA总体:5.6(2.8~7.1)
PD-L1阳性:5.5(2.8~7.1)
PD-L1阴性:6.2(1.4~7.1)
MSI-H:NA
MSS:5.9(2.5~7.1)总体:NE(NE~NE)
PD-L1阳性:NA
PD-L1阴性:NA
MSI-H:NA
MSS:NA68.4(43.4~87.4) NR(23.3~29.5) 5.1(1.9~9.1) 21.9(15.1~NR) 40 3.8 3.5(1.9~5.1) 14.5(8.3~26.8) 赛帕利单抗 53.66(37.43~69.34) NA NA NA *该研究为80% CI,PD-L1阳性,TPS≥1%;#PD-L1阳性,TPS≥1%;PD-1、PD-L1:同表 2;ORR、DCR、mDOR、mPFS、mOS、MSI、MSI-H、MSS、TPS、NA、NE、NR: 同表 3 表 5 PD-1/PD-L1抑制剂联合治疗晚期/复发性子宫颈癌的研究
联合方案 研究(注册号) 试验期别 研究分组 样本量(n) 生物标志物(表达) ORR(%, 95% CI) PD-1/PD-L1抑制剂联合含铂方案化疗 紫杉醇/卡铂或顺铂(加或不加贝伐珠单抗)±帕博利珠单抗 KEYNOTE-826 (NCT03635567)[50] Ⅲ期 含铂化疗组,联合组(帕博利珠单抗联合含铂化疗) 617 (1∶1) CPS≥1分者548例,
CPS≥10分者317例CPS≥1分者:联合组68.1、含铂化疗组50.2
全部入组患者:联合组65.9、含铂化疗组50.8
CPS≥10分者:联合组69.6、含铂化疗组49.1PD-1/PD-L1抑制剂联合CTLA-4抑制剂 balstilimab±zalifrelimab NCT03104699,NCT03495882[51] Ⅱ期 balstilimab单药,balstilimab联合zalifrelimab 161,155 PD-L1:
单药99例
联合86例单药:14(10~21)
PD-L1阳性:19(13~28)
PD-L1阴性:10(4~22)
联合:22(16~29)
PD-L1阳性:27(19~37)
PD-L1阴性:11(4~25)纳武利尤单抗+伊匹木单抗 CHECKMATE358 (NCT02488759)[52] Ⅰ/Ⅱ期 联合A:纳武利尤单抗3 mg/kg,每2周1次+伊匹木单抗1 mg/kg,每6周1次联合B:
纳武利尤单抗1 mg/kg+伊匹木单抗3 mg/kg,每3周1次×4,随后纳武利尤单抗240 mg,每2周1次45
46NA 联合A:既往化疗23,未化疗32
联合B:既往化疗36,未化疗46PD-1/PD-L1抑制剂联合抗血管生成药物 卡瑞利珠单抗+甲磺酸阿帕替尼# CLAP (NCT03816553)[53] Ⅱ期 单臂 45 PD-L1(40例可评估,30例阳性、10例阴性) 总体:55.6(40.0~70.4)
PD-L1阳性:69.0
PD-L1阴性:50.0卡瑞利珠单抗+苹果酸法米替尼 NCT03827837[54] Ⅱ期 单臂 18 NA 61.1(未经确认)
50.5(确认)信迪利单抗+安罗替尼 ChiCTR1900023015[55] Ⅱ期 单臂 39 NA 61.5(44.9~75.9) 阿替利珠单抗+贝伐珠单抗* NCT02921269[56] Ⅱ期 单臂 10 NA 0 联合方案 DCR (%,95% CI) mDOR(月, 95% CI) mPFS(月, 95% CI) mOS(月, 95% CI) PD-1/PD-L1抑制剂联合含铂方案化疗 紫杉醇/卡铂或顺铂(加或不加贝伐珠单抗)±帕博利珠单抗 NA CPS≥1分者:联合组18.0、含铂化疗组10.4全部入组患者:联合组18.0、含铂化疗组10.4 CPS≥10分者:联合组21.1、含铂化疗组9.4 CPS≥1分者:联合组10.4、含铂化疗组8.2(HR=0.62,95% CI:0.50~0.77,P < 0.001)
全部入组患者:联合组10.4、含铂化疗组8.2(HR=0.65,95% CI:0.53~0.79,P < 0.001)
CPS≥10分者:联合组10.4、含铂化疗组8.1(HR=0.58,95% CI:0.44~0.77,P < 0.001)CPS≥1分者:联合组24个月总生存率53.0%,含铂化疗组41.7%(HR=0.64,95% CI:0.50~0.81,P < 0.001)
全部入组患者:联合组总生存率50.4%,含铂化疗组40.4%(HR=0.67,95% CI:0.54~0.84,P < 0.001)
CPS≥10分者:联合组总生存率54.4%,含铂化疗组44.6%(HR=0.61,95% CI:0.44~0.84,P=0.001)PD-1/PD-L1抑制剂联合CTLA-4抑制剂 balstilimab± zalifrelimab NA 单药:15.4(1.1+~15.4) 联合:NR(1.3+~16.6+) NA NA 纳武利尤单抗+伊匹木单抗 NA NA 联合A:既往化疗3.6(1.9~5.1)
未化疗13.8(2.1~NR)
联合B:既往化疗5.8(3.5~17.2)
未化疗8.5(3.7~NR)联合A:既往化疗10.3(7.9~15.2)
未化疗NR(17.4~NR) 联合B:既往化疗25.4(17.5~NR)
未化疗NR(13.9~NR)PD-1/PD-L1抑制剂联合抗血管生成药物 卡瑞利珠单抗+甲磺酸阿帕替尼 82.2(67.9~92.0) NR(5.6~NE) 总体:8.8(5.6~NE)
PD-L1阳性:NR(5.8~NE)
PD-L1阴性:5.2(1.8~NE)NR(11.6~NE) 卡瑞利珠单抗+苹果酸法米替尼 83.3 NA 12.3(3.2~NR) NA 信迪利单抗+安罗替尼 94.9(80.7~98.8) NA NR NA 阿替利珠单抗+贝伐珠单抗* 60 NA 2.9(1.8~6.0) 8.9(3.4~21.9) *未观察到经证实的临床缓解,mPFS仅为2.9个月,终止研究;#CPS≥1分;PD-1、PD-L1、CTLA-4:同表 2;ORR、CPS、DCR、mDOR、mPFS、mOS、NA、NE、NR: 同表 3 表 6 PD-1/PD-L1抑制剂单药治疗晚期/复发性卵巢癌的研究
药物名称 研究(注册号) 试验期别 研究分组 样本量(n) 生物标志物(表达) ORR(%,95% CI) BMS-936559 NCT00729664[59] Ⅰ期 单臂 17 NA 6(0~29) 纳武利尤单抗 UMIN000005714[60] Ⅱ期 单臂(铂耐药) 20 PD-L1(16例高表达,4例低表达) 15(3.2~37.9) NINJA (JapicCTI-153004)[61] Ⅱ期 纳武利尤单抗; 吉西他滨或PLD(铂耐药) 316 (1∶1) NA 纳武利尤单抗:7.6(3.5~13.9) 吉西他滨或PLD:13.2(7.6~20.8) 帕博利珠单抗 KEYNOTE-028 (NCT02054806)[62] Ⅰb期 单臂 26 入组PD-L1者 11.5(2.4~30.2) KEYNOTE-100 (NCT02674061)*[63] Ⅱ期 单臂队列A:既往接受过1~3线治疗,PFI:3~12个月队列B:既往接受过4~6线治疗,PFI≥3个月 376队列A:285队列B:91 PD-L1队列A:CPS≥1分,101例CPS≥10分,43例队列B:CPS≥1分,49例CPS≥10分,22例 总体:8.5(5.9~11.8) CPS≥1分:8.0(4.2~13.6) CPS≥10分:13.8(6.5~24.7) 队列A:8.1(5.2~11.9) CPS≥1分:6.9(2.8~13.8) CPS≥10分:11.6(3.9~25.1) 队列B:9.9(4.6~17.9) CPS≥1分:10.2(3.4~22.2) CPS≥10分:18.2(5.2~40.3) 阿替利珠单抗 NCT01375842# [64] Ⅰa期 单臂 10 NA 22.2(2.8~60.0) 阿维鲁单抗 JAVELIN Solid Tumor (NCT01772004)[65] Ⅰb期 单臂 125 PD-L1 TPS≥1%:60.8% TPS≥5%:25.6% 肿瘤浸润免疫细胞≥10%:12.8% 9.6(5.1~16.2) TPS≥1%+/-:11.8/7.9 TPS≥5%+/-:12.5/9.8肿瘤浸润免疫细胞≥10%+/-:0/12.2 JAVELIN Ovarian 200 (NCT02580058)[66] Ⅲ期 阿维鲁单抗单药; 阿维鲁单抗+PLD; PLD单药(铂耐药) 566 (1∶1∶1) NA 阿维鲁单抗单药:3.7(1.5~7.5) 阿维鲁单抗+PLD:13.3(8.8~19.0) PLD单药:4.2(1.8~8.1) 药物名称 DCR(%, 95% CI) mDOR(月, 95% CI) mPFS(月, 95% CI) mOS(月, 95% CI) BMS-936559 24 NA NA NA 纳武利尤单抗 45(23.1~68.5) NA 3.5(1.7~3.9) 20(7.0~NR) 纳武利尤单抗:36.1吉西他滨或PLD:60.5 纳武利尤单抗:18.7(2.5~NE) 吉西他滨或PLD:7.4(3.0~10.3) 纳武利尤单抗:2.0(1.9~2.2) 吉西他滨或PLD:3.8(3.6~4.2) HR=1.5,P=0.002 纳武利尤单抗:10.1(8.3~14.1) 吉西他滨或PLD:12.1(9.3~15.3) HR=1.0,P=0.808(主要研究终点) 帕博利珠单抗 38.4 NR(20.5+~30.4+) 1.9(1.8~3.5) 13.8(6.7~18.8) 总体:22.1(18.0~26.6) CPS≥1分:24.0(17.4~31.6) CPS≥10分:27.7(17.3~40.2) 队列A:22.1(17.4~27.4) CPS≥1分:24.8(16.7~34.3) CPS≥10分:25.6(13.5~41.2) 队列B:22.0(14.0~31.9) CPS≥1分:22.4(11.8~36.6) CPS≥10分:31.8(13.9~54.9) 总体:10.2(3.3+~35.4+) 队列A:8.3(3.9~35.4+) 队列B:23.6(3.3+~32.8+) 队列A:2.1(2.1~2.2) CPS≥1分:2.1(2.1~2.8) CPS≥10分:2.1(2.1~4.2) 队列B:2.1(2.1~2.6) CPS≥1分:2.1(2.1~3.3) CPS≥10分:2.1(2.0~8.3) 队列A:18.7(17.0~22.5) CPS≥1分:20.6(15.2~23.2) CPS≥10分:21.9(12.9~26.8) 队列B:17.6(13.3~24.4) CPS≥1分:20.7(13.6~27.4) CPS≥10分:24.0(14.5~NR) 阿替利珠单抗 22.2 2例PR者为8.1个月和30.6+个月 2.9(1.3~5.5) 11.3(5.5~27.7) 阿维鲁单抗 52 NA 2.6(1.4~2.8) TPS≥1%+/-:2.7/1.4 TPS≥5%+/-:2.7/2.2肿瘤浸润免疫细胞≥10%+/-:1.5/2.6 11.2(8.7~15.4) TPS≥1%+/-:13.8/7.0 TPS≥5%+/-:10.6/11.9肿瘤浸润免疫细胞≥10%+/-:11.1/11.9 阿维鲁单抗单药:33(26~40) 阿维鲁单抗+PLD:57(50~65) PLD单药:49(42~56) 阿维鲁单抗单药:9.2(8.4~NE) 阿维鲁单抗+PLD:8.5(5.8~NE) PLD单药:13.1(7.4~NE) 阿维鲁单抗单药:1.9(1.8~1.9) 阿维鲁单抗+PLD:3.7(3.3~5.1) PLD单药:3.5(2.1~4.0) 联合比PLD:HR=0.78 (93.1% CI:0.59~ 1.24),P=0.030阿维鲁单抗比PLD:HR=1.68(1.32~2.60),P>0.99 阿维鲁单抗单药:11.8(8.9~14.1) 阿维鲁单抗+PLD:15.7(12.7~18.7) PLD单药:13.1(11.8~15.5) 联合比PLD:HR=0.89,P=0.21阿维鲁单抗比PLD: HR=1.14(0.95~1.58),P=0.83 *DCR,CR/PR/SD持续≥24周;#10例评估PFS/OS,9例评估ORR;PD-1、PD-L1:同表 2;ORR、DCR、mDOR、mPFS、mOS、PR、SD、TPS、CPS、NA、NE、NR: 同表 3;CR:完全缓解;PLD: 聚乙二醇化脂质体多柔比星;PFI: 无铂治疗间期 表 7 PD-1/PD-L1抑制剂联合化疗治疗晚期/复发性卵巢癌的研究
联合方案 研究(注册号) 试验期别 研究分组 样本量(n) 生物标志物(表达) ORR(%, 95% CI) 紫杉醇/卡铂±阿维鲁单抗 JAVELIN Ovarian 100 (NCT02718417)[67] Ⅲ期 化疗→Ave组:化疗随后阿维鲁单抗维持治疗;化疗+Ave→Ave组:化疗+阿维鲁单抗随后阿维鲁单抗维持;化疗→对照组:单独化疗随后观察(一线治疗) 998 (1∶1∶1) NA 化疗→Ave组:30.4(25.5~35.7)
化疗+Ave→Ave组:36.0(30.8~41.4)
化疗→对照组:30.4(25.6~35.7)PLD+阿维鲁单抗 JAVELIN Ovarian 200 (NCT02580058)[66] Ⅲ期 阿维鲁单抗单药;阿维鲁单抗+PLD;PLD单药(铂耐药) 566 (1∶1∶1) NA 阿维鲁单抗单药:3.7(1.5~ 7.5);
阿维鲁单抗+PLD:13.3(8.8~19.0);
PLD单药:4.2(1.8~8.1)PLD+度伐利尤单抗 NCT02431559[68] Ⅰ/Ⅱ期 单臂(铂耐药) 40 NA 22.5(10.8~38.5) PLD+帕博利珠单抗 NCT02865811[69] Ⅱ期 单臂(铂耐药) 23 NA 26.1(10.2~48.4) 帕博利珠单抗+吉西他滨+顺铂 NCT02608684[70] Ⅱ期 单臂(铂耐药) 14 NA 61.1 联合方案 DCR(%, 95% CI) mDOR(月, 95% CI) mPFS(月, 95% CI) mOS(月, 95% CI) 紫杉醇/卡铂±阿维鲁单抗 NA NA 化疗→Ave组:16.8(13.5~NE);化疗+Ave→Ave组:18.1(14.8~ NE);化疗→对照组:NE(18.2~ NE);与化疗→对照组比较,PFS均未改善,超过了预定的无效界限,试验终止(主要研究终点) NA PLD+阿维鲁单抗 阿维鲁单抗单药:33(26~40)
阿维鲁单抗+PLD:57(50~65)
PLD单药:49(42~56)阿维鲁单抗单药:9.2(8.4~NE)
阿维鲁单抗+PLD:8.5(5.8~NE)
PLD单药:13.1(7.4~NE)阿维鲁单抗单药:1.9(1.8~1.9);
阿维鲁单抗+PLD:3.7(3.3~5.1);
PLD单药:3.5(2.1~4.0);
联合比PLD:HR=0.78(93.1%CI:0.59~ 1.24),P=0.030;
阿维鲁单抗比PLD:HR=1.68(1.32~2.60),P>0.99阿维鲁单抗单药:11.8(8.9~14.1);阿维鲁单抗+PLD:15.7(12.7~ 18.7);PLD单药:13.1(11.8~15.5);联合比PLD:HR=0.89,P=0.21;阿维鲁单抗比PLD:HR=1.14(0.95~ 1.58),P=0.83 PLD+度伐利尤单抗 NA NA 5.5(0.3~28.8+) 17.6 (1.7~32.5+) PLD+帕博利珠单抗 CBR:52.2(30.6~73.2) (主要研究终点) NA 8.1(1.7~14.7) 18.3(9.4~31.5) 帕博利珠单抗+吉西他滨+顺铂 88.9 4.9 6.2(3.78~8.26) 11.3(6.35~21.97) PD-1、PD-L1:同表 2;ORR、DCR、mDOR、mPFS、mOS、NA、NE: 同表 3;PLD: 同表 6;CBR: 临床获益率 表 8 PD-1/PD-L1抑制剂联合靶向药物治疗晚期/复发性卵巢癌的研究
联合方案 研究(注册号) 试验期别 研究分组 样本量(n) 生物标志物(表达) ORR(%,95% CI) PD-1/PD-L1抑制剂联合CTLA-4抑制剂 纳武利尤单抗±伊匹木单抗 NRG GY003 (NCT02498600)[71] Ⅱ期 纳武利尤单抗单药组,联合治疗组 100(1∶1) NA 纳武利尤单抗单药组:12.2联合治疗组:31.4(OR=3.28,85% CI:1.54~NE,P=0.034) PD-1/PD-L1抑制剂联合抗血管生成药物 阿替利珠单抗+贝伐珠单抗 NCT01633970[72] Ⅰb期 单臂(铂耐药) 20 NA 15(3.2~37.9) 纳武利尤单抗+贝伐珠单抗 NCT02873962[73] Ⅱ期 单臂 38(18例铂耐药,20例铂敏感) NA 总体#:28.9(15.4~45.9)
铂耐药:16.7(3.6~41.4)
铂敏感:40.0(19.1~64.0)帕博利珠单抗+仑伐替尼 LEAP-005 (NCT03797326)[74] Ⅱ期 单臂 31(25例铂耐药) NA 32(17~51) 卡瑞利珠单抗+苹果酸法米替尼 NCT03827837[54] Ⅱ期 单臂(铂耐药) 32 NA 未确认:31.2
确认:28.1PD-1/PD-L1抑制剂联合PARP抑制剂 度伐利尤单抗+奥拉帕利 MEDIOLA (NCT02734004)[75] Ⅱ期 单臂(gBRCA突变的铂敏感) 32 NA 71.9 (53.25~86.25) 帕博利珠单抗+尼拉帕利 TOPACIO/KEYNOTE-162 (NCT02657889)[76] Ⅰ/Ⅱ期 单臂(铂耐药) 60 NA 18(90% CI:11~29) 多种治疗方式联合 口服环磷酰胺+帕博利珠单抗+贝伐珠单抗 NCT02853318[77] Ⅱ期 单臂 40(30例铂耐药,10例铂敏感) NA 总体:47.5(90% CI:34.9~60.3)
铂耐药:43.3(90% CI:29.6~58.2)
铂敏感:60(90% CI:26.2~73.8)奥拉帕利+度伐利尤单抗±贝伐珠单抗 MEDIOLA (NCT02734004)[78] Ⅱ期 三药联合组,双药联合组(gBRCA野生型的铂敏感) 63(1∶1) NA 三药联合组:87.1(70.2~96.4)
双药联合组:34.4(18.6~53.2)紫杉醇/卡铂±贝伐珠单抗±talazoparib±阿维鲁单抗 JAVELIN OVARIAN PARP 100 (NCT03642132) Ⅲ期 紫杉醇/卡铂联合贝伐珠单抗并序贯维持组,紫杉醇/卡铂化疗随后talazoparib维持组,紫杉醇/卡铂联合阿维鲁单抗并talazoparib+阿维鲁单抗序贯维持组(一线治疗) 720 (2.5∶1∶2.5) NA NA 紫杉醇/卡铂+贝伐珠单抗±阿替利珠单抗 IMagyn050/GOG 3015/ENGOT-OV39(NCT03038100)[79] Ⅲ期 阿替利珠单抗联合组,对照组(一线治疗) 1301 (1∶1) PD-L1阳性* 阿替利珠单抗联合组:93(89~96)
PD-L1阳性:92(87~96)
对照组:89(84~92)
PD-L1阳性:90(84~94)联合方案 DCR(%, 95% CI) mDOR(月, 95% CI) mPFS(月, 95% CI) mOS(月, 95% CI) PD-1/PD-L1抑制剂联合CTLA-4抑制剂 纳武利尤单抗±伊匹木单抗 NA NA 纳武利尤单抗单药组:2.0联合治疗组:3.9(HR=0.528,0.339~0.821,P=0.004) 纳武利尤单抗单药组:21.8联合治疗组:28.1(HR=0.789,0.439~1.418,P=0.43) PD-1/PD-L1抑制剂联合抗血管生成药物 阿替利珠单抗+贝伐珠单抗 55(31.5~76.9) NR(11.3~NR) 4.9(1.2~20.2) 10.2(1.2~26.6) 纳武利尤单抗+贝伐珠单抗 总体:55.3
铂耐药:33.3
铂敏感:75NA 总体†:9.4(6.7~NA)
铂耐药:7.7(4.7~NA)
铂敏感:12.1(8.4~NA)NA 帕博利珠单抗+仑伐替尼 74(55~88) NR(1.5+~7.9+) 4.4(4.0~8.5) NA 卡瑞利珠单抗+苹果酸法米替尼 62.5 NA 4.2(2.1~6.2) NA PD-1/PD-L1抑制剂联合PARP抑制剂 奥拉帕利+度伐利尤单抗 28周DCR:65.6(90% CI:49.6~79.4) 10.2 11.1(8.2~15.9) NR 尼拉帕利+帕博利珠单抗 65(90% CI:54~75) NA 3.4(2.1~5.1) NA 多种治疗方式联合 口服环磷酰胺+帕博利珠单抗+贝伐珠单抗 总体:95
铂耐药:93.3
铂敏感:1005.9(3.6~11.3) 总体:10.0(90% CI:6.5~17.4)
铂耐药:7.6(90% CI:5.7~10.3)
铂敏感:20.2(90% CI:6.0~NR)NA 奥拉帕利+度伐利尤单抗±贝伐珠单抗 24周DCR(主要研究终点)
三药联合组:77.4(90% CI:61.7~88.9)
双药联合组:28.1(90% CI:15.5~43.9)三药联合组:11.1(IQR:7.4~16.4)
双药联合组:6.9(IQR:5.4~11.1)三药联合组:14.7(10.0~18.1) 双药联合组:5.5(3.6~7.5) NA 紫杉醇/卡铂±贝伐珠单抗±talazoparib±阿维鲁单抗 NA NA 联合维持组PFS无显著获益,研究中止 紫杉醇/卡铂+贝伐珠单抗±阿替利珠单抗 NA NA 阿替利珠单抗联合组:19.5(18.1~20.8)
PD-L1阳性:20.8(19.1~24.2)
对照组:18.4(17.2~19.8)
PD-L1阳性:18.5(16.6~21.4)
mPFS两组间:HR=0.92(0.79~1.07),P=0.2785
PD-L1阳性两组间:HR=0.80(0.65~0.99),P=0.0376(主要研究终点)(P≤0.002为阳性)阿替利珠单抗联合组:NE
PD-L1阳性:NE
对照组:NE PD-L1阳性:31.2(30.0~NE)
mOS两组间:HR=0.96(0.74~1.26),P=0.7887
PD-L1阳性两组间:HR=0.98(0.68~1.41), P=0.9083(OS中期分析)*浸润免疫细胞占肿瘤面积比例≥1%;#临床受益率为完全缓解、部分缓解和24周疾病无恶化的比例;†RECIST 1.1评估;PD-1、PD-L1、CTLA-4 : 同表 2;ORR、DCR、mDOR、mPFS、mOS、NA、NE、NR: 同表 3;HR:风险比;RECIST:实体瘤临床疗效评价标准;IQR:四分位间距 表 9 免疫相关不良事件处理基本原则
CTCAE分级 患者护理级别 激素 其他免疫检查点抑制剂 免疫治疗及后续应用 G1 无需住院 不推荐 不推荐 继续 G2 无需住院 局部激素或全身激素治疗,口服泼尼松或甲泼尼龙0.5~1.0 mg/(kg·d) 不推荐 暂时停用* G3 住院治疗 全身激素治疗,口服或静脉使用泼尼松或甲泼尼龙1~2 mg/(kg·d) 激素治疗3~5 d后症状未能缓解的患者可考虑在专科医生指导下使用 停用,基于患者的风险-获益比讨论是否恢复免疫治疗 G4 住院治疗,考虑ICU 全身激素治疗,静脉使用甲泼尼龙1~2 mg/(kg·d),连续3 d,后逐渐减量至1 mg/(kg·d) 激素治疗3~5 d后症状未能缓解的患者可考虑在专科医生指导下使用 永久停用 CTCAE:常见不良反应事件评价标准;ICU:重症监护病房;*如仅表现为皮肤或内分泌症状,免疫治疗可继续 附录1 妇科肿瘤常见irAE的分级和处理
分级 描述 处理 皮疹(检查全身皮肤、黏膜,评估既往皮肤疾病病史,必要时活检) G1 斑疹/丘疹区域 < 10%全身BSA,伴或不伴瘙痒、灼痛、紧绷等症状 继续ICI治疗;局部使用润肤剂;口服抗组胺药物;局部外用中效糖皮质激素 G2 斑疹/丘疹区域占10%~30%全身BSA,伴或不伴瘙痒、灼痛、紧绷等症状,日常生活、使用工具能力受限 继续ICI治疗;局部使用润肤剂;口服抗组胺药物;局部外用中效或强效糖皮质激素和/或口服泼尼松0.5~1.0 mg/(kg·d) G3~G4 斑疹/丘疹区域>30%全身BSA,伴或不伴瘙痒、灼痛、紧绷等症状,日常生活自理能力受限 暂停ICI治疗;局部使用润肤剂;口服抗组胺药物;局部外用强效糖皮质激素,口服泼尼松0.5~1.0 mg/(kg·d),如无改善,增量至2 mg/(kg·d);请皮肤科会诊,必要时活检及住院治疗 瘙痒(检查全身皮肤、黏膜,评估既往皮肤疾病病史) G1 轻微或局限 继续ICI治疗;口服抗组胺药物;局部外用中效糖皮质激素或利多卡因贴剂 G2 剧烈或广泛;间歇性;抓挠至皮肤受损(如水肿、丘疹、脱屑、苔藓化、渗出/结痂);日常使用工具能力受限 加强止痒等对症处理时可继续ICI治疗(部分严重患者可考虑停用);口服抗组胺药物;局部外用强效糖皮质激素;请皮肤科会诊 G3 强烈或广泛;持续性;日常生活自理能力明显受限或影响睡眠 暂停ICI治疗;口服抗组胺药物;泼尼松或甲泼尼龙0.5~1.0 mg/(kg·d);γ-氨基丁酸激动剂(如加巴喷丁、普瑞巴林);难治性瘙痒可考虑给予阿瑞匹坦或奥马珠单抗(如血IgE水平升高);请皮肤科会诊 甲状腺功能减退 G1 无症状,仅诊断性TFT,无需治疗 继续ICI治疗 G2 有症状,需甲状腺激素替代治疗 继续ICI治疗;TSH升高(>10 mU/L),补充甲状腺素治疗;排除合并肾上腺功能不全;推荐专科会诊 G3 严重症状,个人自理能力受限,需住院 同G2 G4 危及生命,需紧急干预 暂停ICI治疗,对症支持治疗;推荐专科会诊 甲状腺功能亢进 G1 无症状,仅诊断性TFT,无需治疗 继续ICI治疗;有症状者,给予普萘洛尔、美替洛尔或阿替洛尔口服缓解症状;4~6周复查TFT;推荐专科会诊 G2 有症状,需行甲状腺激素抑制治疗 同G1 G3 严重症状,个人自理能力受限,需住院 同G1 G4 危及生命,需紧急干预 暂停ICI治疗,对症支持治疗;推荐专科会诊 肝脏毒性(注意排除病毒、疾病、其他药物等原因引起的肝功能异常) G1 AST或ALT < 3倍正常值上限(胆红素正常) 继续ICI治疗;增加肝功能监测频率 G2 AST或ALT在3~5倍正常值上限(胆红素正常) 暂停ICI治疗;每3~5天复查肝功能;口服泼尼松0.5~1.0 mg/(kg·d),好转后缓慢减量,总疗程至少4周 G3 AST或ALT在5~20倍正常值上限(胆红素正常) 永久性停用ICI;住院治疗;静脉滴注甲泼尼龙1~2 mg/(kg·d),待好转至G2后改等效口服并继续缓慢减量;每1~2天复查肝功能;请专科会诊;3 d无好转可考虑加用吗替麦考酚酯500~1000 mg,每12小时1次;不推荐使用英夫利西单抗 G4 AST或ALT>20倍正常值上限(胆红素正常) 永久性停用ICI;住院治疗;静脉滴注甲泼尼龙2 mg/(kg·d);每天复查肝功能;请专科会诊;无禁忌时考虑肝脏活检;3 d无好转可考虑加用吗替麦考酚酯500~1000 mg,每12小时1次;不推荐使用英夫利西单抗 其他 ALT或AST升高>G1,且胆红素>1.5倍正常值上限 永久性停用ICI;住院治疗;静脉滴注甲泼尼龙2 mg/(kg·d);每天复查肝功能;请专科会诊;3 d无好转可考虑加用吗替麦考酚酯500~ 1000 mg,每12小时1次;不推荐使用英夫利西单抗 腹泻/结肠炎(大便检查排除感染性原因) G1 无症状,只需观察(1级腹泻 < 4次/d) 可继续ICI治疗;洛哌丁胺或地芬诺酯/阿托品2~3 d;行血常规、肝肾功能、电解质、TFT、大便检查等;必要时口服补液盐等对症处理,并密切监测病情变化;避免高纤维/乳糖饮食;如症状持续或加重,推荐乳铁蛋白检测,如阳性,按照下述G2处理,如阴性且无感染,继续G1治疗,加用美沙拉秦、考来烯胺 G2 腹痛;大便带黏液或带血(2级腹泻4~6次/d) 暂停ICI治疗;检验项目同G1;有结肠炎体征时行胃肠X线检查;预约结肠镜、活检;口服泼尼松1~2 mg/(kg·d),如48~72 h无好转,考虑加用英夫利西单抗或维得利珠单抗(第1次使用英夫利西单抗或维得利珠单抗时应行结核检测) G3~G4 剧烈腹痛;大便习惯改变;需药物干预治疗;腹膜刺激征;影响日常生活能力;血流动力学不稳定;需住院治疗;或其他严重并发症(如肠缺血、肠坏死、中毒性巨结肠)(3级腹泻≥7次/d) G3暂停ICI治疗;G4永久性停用ICI;住院对症支持治疗;检验项目同G1;有结肠炎体征时行腹盆增强CT;预约结肠镜、活检;每天复查血常规、肝肾功能、电解质、C反应蛋白;饮食指导(禁食、流食、全肠外营养);静脉滴注甲泼尼龙1~2 mg/(kg·d),如48 h无好转,加用英夫利西单抗或维得利珠单抗 肌炎或肌痛 G1 轻度症状或不伴疼痛 继续ICI治疗;全面评估肌力;监测肌酸激酶、醛缩酶、转氨酶、乳酸脱氢酶等;如肌酸激酶升高并伴有肌力下降,可予以糖皮质激素治疗;排除禁忌后,可予以对乙酰氨基酚或非甾体抗炎药镇痛治疗 G2 中度症状伴或不伴疼痛,影响使用工具能力 暂停ICI治疗;排除禁忌后,可予以对乙酰氨基酚或非甾体抗炎药镇痛治疗;监测肌酸激酶、醛缩酶、转氨酶、乳酸脱氢酶等;如肌酸激酶≥3倍正常值上限,予以口服泼尼松0.5~1.0 mg/(kg·d) G3 重度症状伴或不伴疼痛,影响日常生活自理能力 暂停ICI;请内分泌科、神经内科、风湿病科会诊;监测肌酸激酶、醛缩酶、转氨酶、乳酸脱氢酶等;静脉滴注甲泼尼龙1~2 mg/(kg·d) 肺炎 G1 无症状;局限于单个肺叶或 < 25%肺实质 考虑暂停ICI治疗;行胸部CT、血氧饱和度、血常规、肝肾功能、电解质、TFT、红细胞沉降率、肺功能等检查;3~4周复查胸部CT、肺功能;如影像学好转,密切随访并恢复ICI治疗;如影像学进展,升级治疗方案,暂停ICI治疗;如影像学无变化,继续治疗并密切随访至出现新症状 G2 出现新症状或症状恶化,包括呼吸短促、咳嗽、胸痛、发热、缺氧;涉及多个肺叶且达到25%~ 50%肺实质,影响日常生活,需使用药物干预 暂停ICI治疗;请专科会诊;检查同上,并行感染性检查,如痰培养、血培养、支气管镜检查和支气管肺泡灌洗等排查感染;静脉滴注甲泼尼龙1~2 mg/(kg·d),治疗48~72 h后,若症状缓解,继续治疗并4~6周内逐步减量;若症状无好转,按照G3~G4治疗;如不能完全排除感染,经验性抗感染治疗;3~4周复查胸部CT;临床症状和影像学缓解至≤G1,可评估后使用ICI G3 严重的新发症状,累及所有肺叶或>50%肺实质,自理能力受限,需吸氧,需住院治疗 检查同G2;永久性停用ICI治疗;专科会诊;静脉滴注甲泼尼龙2 mg/(kg·d),酌情行肺通气治疗;治疗48 h后,若症状缓解,继续治疗至≤G1,然后在4~6周内逐步减量;若症状无好转,可考虑加用英夫利西单抗(5 mg/kg,静脉注射,必要时14 d后再次给药)或吗替麦考酚酯,或免疫球蛋白;如不能完全排除感染,需行抗感染治疗;必要时请呼吸科、感染科会诊 G4 危及生命等呼吸困难、急性呼吸窘迫综合征,需气管插管等紧急干预治疗 同G3 注:以上均为2A类推荐;irAE:免疫治疗相关不良事件;BSA:体表面积;ICI:免疫检查点抑制剂;IgE:免疫球蛋白E;TFT:甲状腺功能检测;TSH:促甲状腺激素;AST:谷草转氨酶;ALT:谷丙转氨酶 附录2 基线评估
检查项目 评估内容 一般情况 体格检查(包括神经系统检查);详细询问病史(包括自身免疫病、内分泌疾病、感染性疾病、吸烟史、家族史、妊娠史、既往治疗情况)和合并用药情况;排便习惯 影像学检查 胸、腹(包括盆腔)CT或MRI;必要时脑MRI 一般血液学检查 血常规;生化(包括血糖、血脂);感染性疾病筛查,如乙型肝炎、丙型肝炎、艾滋病等 皮肤、黏膜 皮肤、黏膜检查,尤其是有免疫性皮肤疾病者 甲状腺 甲状腺功能检测,包括促甲状腺激素、甲状腺素等 肾上腺、垂体 肾上腺:早晨8点血浆皮质醇、促肾上腺皮质激素等检测;垂体:甲状腺功能检测 肺 氧饱和度(静息时和活动时);常规胸部影像学检查,如胸部CT;高危患者行肺功能检查 心血管 心肌酶谱、心电图、心脏彩超(射血分数);必要时请心脏专科医生行个体化评估 类风湿/骨骼肌 对有相关病史者进行关节检查、功能评估 注:以上均为2A类推荐;MRI:磁共振成像 附录3 irAE监测
检查项目 监测内容* 处理 一般情况 每次随访时均应行irAE相关症状评估,包括体格检查(含神经系统检查)、排便习惯等 根据结果,予以相应处理 影像学检查 ICI治疗期间,每4~6周复查胸、腹、盆腔CT 根据结果,予以相应处理 一般血液学检查 ICI治疗期间,每次治疗前或每2~3周复查血常规、生化等;治疗结束后,每4~6周复查或病情需要时 根据结果,予以相应处理;血糖升高时,推荐检测糖化血红蛋白 皮肤、黏膜 每次随访或查房时,行皮肤、黏膜检查,尤其是有自身免疫病者 及时记录(拍照)病变部位和类型,必要时活检 甲状腺 ICI治疗期间,每4~6周复查TFT;治疗结束后,每12周复查或病情需要时 根据结果,予以相应处理 肾上腺、垂体 ICI治疗期间,每次治疗前或每2~3周复查早晨8点的血浆皮质醇以及TFT#;治疗结束后,如无特殊情况,每6~12周复查 异常时,进一步检测促黄体生成素、促卵泡激素、雌二醇、促肾上腺皮质激素;根据结果,予以相应处理 肺 ICI治疗期间,每4~6周复查氧饱和度(静息时和活动时),以及常规肺部影像学检查,如胸部CT;必要时活检以排除其他原因 根据结果,予以相应处理 心血管 ICI治疗期间,每2~4周复查心电图、心肌酶谱等,尤其是基线评估异常或有症状者 推荐咨询心脏专科医生进行相应处理 注:以上均为2A类推荐;根据指征,必要时请相关专科会诊,转科治疗;*联合免疫治疗方案时酌情增加监测频率;#前4周期治疗后仅病情需要时复查;irAE、ICI、TFT:同附录1 -
[1] Brunet JF, Denizot F, Luciani MF, et al. A new member of the immunoglobulin superfamily-CTLA-4[J]. Nature, 1987, 328: 267-270. DOI: 10.1038/328267a0
[2] Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation[J]. J Exp Med, 1995, 182: 459-465. DOI: 10.1084/jem.182.2.459
[3] Egen JG, Kuhns MS, Allison JP. CTLA-4: new insights into its biological function and use in tumor immunotherapy[J]. Nat Immunol, 2002, 3: 611-618. DOI: 10.1038/ni0702-611
[4] Ishida Y, Agata Y, Shibahara K, et al. Induced expression of PD-1, a novel member of the immunoglobulin gene super-family, upon programmed cell death[J]. EMBO J, 1992, 11: 3887-3895. DOI: 10.1002/j.1460-2075.1992.tb05481.x
[5] Nishimura H, Nose M, Hiai H, et al. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor[J]. Immunity, 1999, 11: 141-151. DOI: 10.1016/S1074-7613(00)80089-8
[6] Korman AJ, Peggs KS, Allison JP. Checkpoint blockade in cancer immunotherapy[J]. Adv Immunol, 2006, 90: 297-339. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1951510/pdf/nihms26747.pdf
[7] Wei SC, Levine JH, Cogdill AP, et al. Distinct Cellular Mechanisms Underlie Anti-CTLA-4 and Anti-PD-1 Check-point Blockade[J]. Cell, 2017, 170: 1120-1133. DOI: 10.1016/j.cell.2017.07.024
[8] Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: Co-inhibitory Receptors with Specialized Functions in Immune Regulation[J]. Immunity, 2016, 44: 989-1004. DOI: 10.1016/j.immuni.2016.05.001
[9] Duan J, Cui L, Zhao X, et al. Use of Immunotherapy With Programmed Cell Death 1 vs Programmed Cell Death Ligand 1 Inhibitors in Patients With Cancer: A Systematic Review and Meta-analysis[J]. JAMA Oncol, 2020, 6: 375-384. DOI: 10.1001/jamaoncol.2019.5367
[10] Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy[J]. Science, 2015, 348: 69-74. DOI: 10.1126/science.aaa4971
[11] Gubin MM, Zhang X, Schuster H, et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens[J]. Nature, 2014, 515: 577-581. DOI: 10.1038/nature13988
[12] Kim JY, Kronbichler A, Eisenhut M, et al. Tumor Mutational Burden and Efficacy of Immune Checkpoint Inhibitors: A Systematic Review and Meta-Analysis[J]. Cancers (Basel), 2019, 11: 1798. DOI: 10.3390/cancers11111798
[13] Bhangoo MS, Boasberg P, Mehta P, et al. Tumor Mutational Burden Guides Therapy in a Treatment Refractory POLE-Mutant Uterine Carcinosarcoma[J]. Oncologist, 2018, 23: 518-523. DOI: 10.1634/theoncologist.2017-0342
[14] Asaoka Y, Ijichi H, Koike K. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency[J]. N Engl J Med, 2015, 373: 1979. DOI: 10.1056/NEJMc1510353
[15] Chen PL, Roh W, Reuben A, et al. Analysis of Immune Signatures in Longitudinal Tumor Samples Yields Insight into Biomarkers of Response and Mechanisms of Resistance to Immune Checkpoint Blockade[J]. Cancer Discov, 2016, 6: 827-837. DOI: 10.1158/2159-8290.CD-15-1545
[16] Wolchok JD, Hoos A, O'Day S, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria[J]. Clin Cancer Res, 2009, 15: 7412-7420. DOI: 10.1158/1078-0432.CCR-09-1624
[17] Seymour L, Bogaerts J, Perrone A, et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics[J]. Lancet Oncol, 2017, 18: e143-e152. DOI: 10.1016/S1470-2045(17)30074-8
[18] Hodi FS, Ballinger M, Lyons B, et al. Immune-Modified Response Evaluation Criteria In Solid Tumors (imRECIST): Refining Guidelines to Assess the Clinical Benefit of Cancer Immunotherapy[J]. J Clin Oncol, 2018, 36: 850-858. DOI: 10.1200/JCO.2017.75.1644
[19] Nishino M, Gargano M, Suda M, et al. Optimizing immune-related tumor response assessment: does reducing the number of lesions impact response assessment in melanoma patients treated with ipilimumab?[J]. J Immunother Cancer, 2014, 2: 17. DOI: 10.1186/2051-1426-2-17
[20] Chiou VL, Burotto M. Pseudoprogression and Immune-Related Response in Solid Tumors[J]. J Clin Oncol, 2015, 33: 3541-3543. DOI: 10.1200/JCO.2015.61.6870
[21] Champiat S, Dercle L, Ammari S, et al. Hyper-progressive Disease Is a New Pattern of Progression in Cancer Patients Treated by Anti-PD-1/PD-L1[J]. Clin Cancer Res, 2017, 23: 1920-1928. DOI: 10.1158/1078-0432.CCR-16-1741
[22] Billan S, Kaidar-Person O, Gil Z. Treatment after progres-sion in the era of immunotherapy[J]. Lancet Oncol, 2020, 21: e463-e476. DOI: 10.1016/S1470-2045(20)30328-4
[23] Herzog TJ, Arguello D, Reddy SK, et al. PD-1, PD-L1 expression in 1599 gynecological cancers: Implications for immun-otherapy[J]. Gynecol Oncol, 2015, 137: 204-205. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0090825815005181&originContentFamily=serial&_origin=article&_ts=1432852546&md5=937cda677e9c1831200f7c75e7ade9ba
[24] Bonneville R, Krook MA, Kautto EA, et al. Landscape of Microsatellite Instability Across 39 Cancer Types[J]. JCO Precis Oncol, 2017, 2017: PO. 17.00073. http://www.onacademic.com/detail/journal_1000042311051799_bccd.html
[25] Shao C, Li G, Huang L, et al. Prevalence of High Tumor Mutational Burden and Association With Survival in Patients With Less Common Solid Tumors[J]. JAMA Netw Open, 2020, 3: e2025109. DOI: 10.1001/jamanetworkopen.2020.25109
[26] Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade[J]. Science, 2017, 357: 409-413. DOI: 10.1126/science.aan6733
[27] Marabelle A, Le DT, Ascierto PA, et al. Efficacy of Pembrolizumab in Patients With Noncolorectal High Microsa-tellite Instability/Mismatch Repair-Deficient Cancer: Results From the Phase Ⅱ KEYNOTE-158 Study[J]. J Clin Oncol, 2020, 38: 1-10.
[28] Marabelle A, Fakih M, Lopez J, et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study[J]. Lancet Oncol, 2020, 21: 1353-1365. DOI: 10.1016/S1470-2045(20)30445-9
[29] Ott PA, Bang YJ, Berton-Rigaud D, et al. Safety and Antitumor Activity of Pembrolizumab in Advanced Programmed Death Ligand 1-Positive Endometrial Cancer: Results From the KEYNOTE-028 Study[J]. J Clin Oncol, 2017, 35: 2535-2541. DOI: 10.1200/JCO.2017.72.5952
[30] Azad NS, Gray RJ, Overman MJ, et al. Nivolumab Is Effective in Mismatch Repair-Deficient Noncolorectal Cancers: Results From Arm Z1D-A Subprotocol of the NCI-MATCH (EAY131) Study[J]. J Clin Oncol, 2020, 38: 214-222. http://www.ncbi.nlm.nih.gov/pubmed/31765263
[31] Oaknin A, Gilbert L, Tinker A, et al. Interim analysis of the immune-related endpoints of the mismatch repair deficient (dMMR) and proficient (MMRp) endometrial cancer cohorts from the GARNET study[C/OL]. Society of Gynecological Oncology 2021 Virtual Annual Meeting on Women's Cancer, 2021. (2021-03-19)[2021-08-23]. https://www.gynecolog-iconcology-online.net/article/S0090-8258(21)00672-7/fulltext.
[32] Antill YC, Kok PS, Robledo KP, et al. Activity of durvalumab in advanced endometrial cancer (AEC) accord-ing to mismatch repair (MMR) status: The phase Ⅱ PHAEDRA trial (ANZGOG1601)[J]. J Clin Oncol, 2019, 37: 5501. DOI: 10.1200/JCO.2019.37.15_suppl.5501
[33] Konstantinopoulos PA, Luo W, Liu JF, et al. Phase Ⅱ Study of Avelumab in Patients With Mismatch Repair Deficient and Mismatch Repair Proficient Recurrent/Persistent Endometrial Cancer[J]. J Clin Oncol, 2019, 37: 2786-2794. DOI: 10.1200/JCO.19.01021
[34] Tamura K, Hasegawa K, Katsumata N, et al. Efficacy and safety of nivolumab in Japanese patients with uterine cervical cancer, uterine corpus cancer, or soft tissue sarcoma: Multicenter, open-label phase 2 trial[J]. Cancer Sci, 2019, 110: 2894-2904. DOI: 10.1111/cas.14148
[35] Fleming GF, Emens LA, Eder J, et al. Clinical activity, safety and biomarker results from a phase Ⅰa study of atezolizumab (atezo) in advanced/recurrent endometrial cancer (rEC)[J]. J Clin Oncol, 2017, 35: 5585. DOI: 10.1200/JCO.2017.35.15_suppl.5585
[36] Huang Y, Kim BYS, Chan CK, et al. Improving immune-vascular crosstalk for cancer immunotherapy[J]. Nat Rev Immunol, 2018, 18: 195-203. DOI: 10.1038/nri.2017.145
[37] Makker V, Taylor MH, Aghajanian C, et al. Lenvatinib Plus Pembrolizumab in Patients With Advanced Endometrial Cancer[J]. J Clin Oncol, 2020, 38: 2981-2992. DOI: 10.1200/JCO.19.02627
[38] Makker V, Colombo N, Herráez AC, et al. A multicenter, open-label, randomized, phase Ⅲ study to compare the efficacy and safety of lenvatinib in combination with pembrolizumab versus treatment of physician's choice in patients with advanced endometrial cancer[C/OL]. Society of Gynecological Oncology 2021 Virtual Annual Meeting on Women's Cancer, 2021. (2021-03-19)[2021-08-23]. https://www.gynecolo-gicon-cology-online.net/article/S0090-8258(21)00657-0/fulltext.
[39] Zitvogel L, Kepp O, Kroemer G. Immune parameters affecting the efficacy of chemotherapeutic regimens[J]. Nat Rev Clin Oncol, 2011, 8: 151-160. DOI: 10.1038/nrclinonc.2010.223
[40] Samanta D, Park Y, Ni X, et al. Chemotherapy induces enrichment of CD47+/CD73+/PDL1+ immune evasive triple-negative breast cancer cells[J]. Proc Natl Acad Sci U S A, 2018, 115: E1239-E1248. DOI: 10.1073/pnas.1718197115
[41] Wang W, Kryczek I, Dostál L, et al. Effector T Cells Abrogate Stroma-Mediated Chemoresistance in Ovarian Cancer[J]. Cell, 2016, 165: 1092-1105. DOI: 10.1016/j.cell.2016.04.009
[42] Pineda MJ, Schilder J, Hill EK, et al. A Big Ten Cancer Research Consortium phase Ⅱ trial of pembrolizumab with carboplatin and paclitaxel for advanced or recurrent endometrial cancer[J]. J Clin Oncol, 2020, 38: 6022. DOI: 10.1200/JCO.2020.38.15_suppl.6022
[43] Liu Y, Wu L, Tong R, et al. PD-1/PD-L1 Inhibitors in Cervical Cancer[J]. Front Pharmacol, 2019, 10: 65. DOI: 10.3389/fphar.2019.00065
[44] Frenel JS, Le Tourneau C, O'Neil B, et al. Safety and Efficacy of Pembrolizumab in Advanced, Programmed Death Ligand 1-Positive Cervical Cancer: Results From the Phase Ⅰb KEYNOTE-028 Trial[J]. J Clin Oncol, 2017, 35: 4035-4041. DOI: 10.1200/JCO.2017.74.5471
[45] Chung HC, Ros W, Delord JP, et al. Efficacy and Safety of Pembrolizumab in Previously Treated Advanced Cervical Cancer: Results From the Phase Ⅱ KEYNOTE-158 Study[J]. J Clin Oncol, 2019, 37: 1470-1478. DOI: 10.1200/JCO.18.01265
[46] Naumann RW, Hollebecque A, Meyer T, et al. Safety and Efficacy of Nivolumab Monotherapy in Recurrent or Metastatic Cervical, Vaginal, or Vulvar Carcinoma: Results From the Phase Ⅰ/Ⅱ CheckMate 358 Trial[J]. J Clin Oncol, 2019, 37: 2825-2834. DOI: 10.1200/JCO.19.00739
[47] Santin AD, Deng W, Frumovitz M, et al. Phase Ⅱ evaluation of nivolumab in the treatment of persistent or recurrent cervical cancer (NCT02257528/NRG-GY002)[J]. Gynecol Oncol, 2020, 157: 161-166. DOI: 10.1016/j.ygyno.2019.12.034
[48] Wu X, Xia L, Zhou Q, et al. Gls-010, a novel anti-PD-1 mAb in Chinese patients with recurrent or metastatic cervical cancer: Results from a multicenter, open-label and single-arm phase Ⅱ trial[J]. J Clin Oncol, 2020, 38: 6032. DOI: 10.1200/JCO.2020.38.15_suppl.6032
[49] Tewari KS, Monk BJ, Vergote I, et al. VP4-2021: EMPOWER-Cervical 1/GOG-3016/ENGOT-cx9: Interim analy-sis of phase Ⅲ trial of cemiplimab vs. investigator's choice (IC) chemotherapy (chemo) in recurrent/metastatic (R/M) cervical carcinoma[J]. Ann Oncol, 2021, 32: 940-941. DOI: 10.1016/j.annonc.2021.04.009
[50] Colombo N, Dubot C, Lorusso D, et al. Pembrolizumab for Persistent, Recurrent, or Metastatic Cervical Cancer[J]. Engl J Med, 2021. doi: 10.1056/NEJMoa2112435.Epubaheadofprint.
[51] O'malley DM, Oaknin A, Monk BJ, et al. LBA34 Single-agent anti-PD-1 balstilimab or in combination with anti-CTLA-4 zalifrelimab for recurrent/metastatic (R/M) cervi-cal cancer (CC): Preliminary results of two independent phase Ⅱ trials-ScienceDirect[J]. Ann Oncol, 2020, 31: S1164-S1165. DOI: 10.1016/j.annonc.2020.08.2264
[52] Naumann RW, Oaknin A, Meyer T, et al. Efficacy and safety of nivolumab (Nivo) + ipilimumab (Ipi) in patients (pts) with recurrent/metastatic (R/M) cervical cancer: Results from CheckMate 358[J]. Ann Oncol, 2019, 30: v898-v899. DOI: 10.1093/annonc/mdz394.059
[53] Lan C, Shen J, Wang Y, et al. Camrelizumab Plus Apatinib in Patients With Advanced Cervical Cancer (CLAP): A Multicenter, Open-Label, Single-Arm, Phase Ⅱ Trial[J]. J Clin Oncol, 2020, 38: 4095-4106. DOI: 10.1200/JCO.20.01920
[54] Xia L, Zhou Q, Zhang Y, et al. 840P Famitinib malate plus camrelizumab for recurrent platinum-resistant ovarian/fallopian tube/primary peritoneal cancer and advanced cervical cancer: An open-label, multicenter phase Ⅱ study[J]. Ann Oncol, 2020, 31: S630.
[55] Xu Q, Chen CB, Sun Y, et al. Anlotinib plus sintilimab in patients with recurrent advanced cervical cancer: A prospective, multicenter, single-arm, phase Ⅱ clinical trial[C]. Chicago: ASCO, 2021: abs 5524.
[56] Friedman CF, Snyder Charen A, Zhou Q, et al. Phase Ⅱ study of atezolizumab in combination with bevacizumab in patients with advanced cervical cancer[J]. J Immunother Cancer, 2020, 8: e001126. DOI: 10.1136/jitc-2020-001126
[57] Wang M, Fan W, Ye M, et al. Molecular profiles and tumor mutational burden analysis in Chinese patients with gynecologic cancers[J]. Sci Rep, 2018, 8: 8990. DOI: 10.1038/s41598-018-25583-6
[58] Chin CD, Fares CM, Campos M, et al. Association of PD-L1 expression by immunohistochemistry and gene microarray with molecular subtypes of ovarian tumors[J]. Mod Pathol, 2020, 33: 2001-2010. DOI: 10.1038/s41379-020-0567-3
[59] Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer[J]. N Engl J Med, 2012, 366: 2455-2465. DOI: 10.1056/NEJMoa1200694
[60] Hamanishi J, Mandai M, Ikeda T, et al. Safety and Antitumor Activity of Anti-PD-1 Antibody, Nivolumab, in Patients With Platinum-Resistant Ovarian Cancer[J]. J Clin Oncol, 2015, 33: 4015-4022. DOI: 10.1200/JCO.2015.62.3397
[61] Hamanishi J, Takeshima N, Katsumata N, et al. Nivolumab Versus Gemcitabine or Pegylated Liposomal Doxor-ubicin for Patients With Platinum-Resistant Ovarian Cancer: Open-Label, Randomized Trial in Japan (NINJA)[J]. J Clin Oncol, 2021: JCO2100334. doi: 10.1200/JCO.21.00334.Epubaheadofprint.
[62] Varga A, Piha-Paul S, Ott PA, et al. Pembrolizumab in patients with programmed death ligand 1-positive advanced ovarian cancer: Analysis of KEYNOTE-028[J]. Gynecol Oncol, 2019, 152: 243-250. DOI: 10.1016/j.ygyno.2018.11.017
[63] Matulonis UA, Shapira R, Santin A, et al. Final results from the KEYNOTE-100 trial of pembrolizumab in patients with advanced recurrent ovarian cancer[J]. J Clin Oncol, 2020, 38: 6005. DOI: 10.1200/JCO.2020.38.15_suppl.6005
[64] Liu JF, Gordon M, Veneris J, et al. Safety, clinical activity and biomarker assessments of atezolizumab from a Phase I study in advanced/recurrent ovarian and uterine cancers[J]. Gynecol Oncol, 2019, 154: 314-322. DOI: 10.1016/j.ygyno.2019.05.021
[65] Disis ML, Taylor MH, Kelly K, et al. Efficacy and Safety of Avelumab for Patients With Recurrent or Refractory Ovarian Cancer: Phase 1b Results From the JAVELIN Solid Tumor Trial[J]. JAMA Oncol, 2019, 5: 393-401. DOI: 10.1001/jamaoncol.2018.6258
[66] Pujade-Lauraine E, Fujiwara K, Ledermann JA, et al. Avelumab alone or in combination with chemotherapy versus chemotherapy alone in platinum-resistant or platinum-refractory ovarian cancer (JAVELIN Ovarian 200): an open-label, three-arm, randomised, phase 3 study[J]. Lancet Oncol, 2021, 22: 1034-1046. DOI: 10.1016/S1470-2045(21)00216-3
[67] Monk BJ, Colombo N, Oza AM, et al. Chemotherapy with or without avelumab followed by avelumab maintenance versus chemotherapy alone in patients with previously untreated epithelial ovarian cancer (JAVELIN Ovarian 100): an open-label, randomised, phase 3 trial[J]. Lancet Oncol, 2021, 22: 1275-1289. DOI: 10.1016/S1470-2045(21)00342-9
[68] O'cearbhaill RE, Homicsko K, Wolfer A, et al. A phase Ⅰ/Ⅱ study of chemo-immunotherapy with durvalumab (durva) and pegylated liposomal doxorubicin (PLD) in platinum-resistant recurrent ovarian cancer (PROC): Genomic sequencing and updated efficacy results[J]. Gynecol Oncol, 2020, 159: 41.
[69] Lee EK, Xiong N, Cheng SC, et al. Combined pembrolizumab and pegylated liposomal doxorubicin in platinum resistant ovarian cancer: A phase 2 clinical trial[J]. Gynecol Oncol, 2020, 159: 72-78. http://www.sciencedirect.com/science/article/pii/S0090825820336635
[70] Walsh CS, Kamrava M, Rogatko A, et al. Phase Ⅱ trial of cisplatin, gemcitabine and pembrolizumab for platinum-resistant ovarian cancer[J]. PLoS One, 2021, 16: e0252665. DOI: 10.1371/journal.pone.0252665
[71] Zamarin D, Burger RA, Sill MW, et al. Randomized Phase Ⅱ Trial of Nivolumab Versus Nivolumab and Ipilimumab for Recurrent or Persistent Ovarian Cancer: An NRG Oncology Study[J]. J Clin Oncol, 2020, 38: 1814-1823. DOI: 10.1200/JCO.19.02059
[72] Moroney JW, Powderly J, Lieu CH, et al. Safety and Clinical Activity of Atezolizumab Plus Bevacizumab in Patients with Ovarian Cancer: A Phase Ⅰb Study[J]. Clin Cancer Res, 2020, 26: 5631-5637. DOI: 10.1158/1078-0432.CCR-20-0477
[73] Liu JF, Herold C, Gray KP, et al. Assessment of Combined Nivolumab and Bevacizumab in Relapsed Ovarian Cancer: A Phase 2 Clinical Trial[J]. JAMA Oncol, 2019, 5: 1731-1738. DOI: 10.1001/jamaoncol.2019.3343
[74] González-Martín A, Chung H, Saada-Bouzid E, et al. Efficacy and safety of lenvatinib plus pembrolizumab in patients with previously treated ovarian cancer in the multicohort phase 2 LEAP-005 study[J]. Int J Gynecol Cancer, 2020, 30: A1-A2. http://www.researchgate.net/publication/346883268_2_Efficacy_and_safety_of_lenvatinib_plus_pembrolizumab_in_patients_with_previously_treated_ovarian_cancer_in_the_multicohort_phase_2_LEAP-005_study
[75] Drew Y, Kaufman B, Banerjee S, et al. Phase Ⅱ study of olaparib + durvalumab (MEDIOLA): Updated results in germline BRCA-mutated platinum-sensitive relapsed (PSR) ovarian cancer (OC)[J]. Ann Oncol, 2019, 30: v485-v486.
[76] Konstantinopoulos PA, Waggoner S, Vidal GA, et al. Single-Arm Phases 1 and 2 Trial of Niraparib in Combination With Pembrolizumab in Patients With Recurrent Platinum-Resistant Ovarian Carcinoma[J]. JAMA Oncol, 2019, 5: 1141-1149. DOI: 10.1001/jamaoncol.2019.1048
[77] Zsiros E, Lynam S, Attwood KM, et al. Efficacy and Safety of Pembrolizumab in Combination With Bevacizumab and Oral Metronomic Cyclophosphamide in the Treatment of Recurrent Ovarian Cancer: A Phase 2 Nonrandomized Clinical Trial[J]. JAMA Oncol, 2021, 7: 78-85. DOI: 10.1001/jamaoncol.2020.5945
[78] Drew Y, Penson RT, O'malley DM, et al. 814MO Phase Ⅱ study of olaparib (O) plus durvalumab (D) and bevac-izumab (B) (MEDIOLA): Initial results in patients (pts) with non-germline BRCA-mutated (non-gBRCAm) platinum sensitive relapsed (PSR) ovarian cancer (OC)[J]. Ann Oncol, 2020, 31: S615-S616.
[79] Moore KN, Bookman M, Sehouli J, et al. Atezolizumab, Bevacizumab, and Chemotherapy for Newly Diagnosed Stage Ⅲ or Ⅳ Ovarian Cancer: Placebo-Controlled Randomized Phase Ⅲ Trial (IMagyn050/GOG 3015/ENGOT-OV39)[J]. J Clin Oncol, 2021, 39: 1842-1855. DOI: 10.1200/JCO.21.00306
[80] Ghorani E, Kaur B, Fisher RA, et al. Pembrolizumab is effective for drug-resistant gestational trophoblastic neoplasia[J]. Lancet, 2017, 390: 2343-2345. DOI: 10.1016/S0140-6736(17)32894-5
[81] Huang M, Pinto A, Castillo RP, et al. Complete Serologic Response to Pembrolizumab in a Woman With Chemoresis-tant Metastatic Choriocarcinoma[J]. J Clin Oncol, 2017, 35: 3172-3174. DOI: 10.1200/JCO.2017.74.4052
[82] Choi MC, Oh J, Lee C. Effective anti-programmed cell death 1 treatment for chemoresistant gestational trophoblastic neoplasia[J]. Eur J Cancer, 2019, 121: 94-97. DOI: 10.1016/j.ejca.2019.08.024
[83] 程红燕, 杨隽钧, 赵峻, 等. PD-1抑制剂治疗耐药复发妊娠滋养细胞肿瘤的初步探讨[J]. 中华妇产科杂志, 2020, 55: 390-394. DOI: 10.3760/cma.j.cn112141-20191121-00636 [84] You B, Bolze PA, Lotz JP, et al. Avelumab in Patients With Gestational Trophoblastic Tumors With Resistance to Single-Agent Chemotherapy: Cohort A of the TROPHIMMUN Phase Ⅱ Trial[J]. J Clin Oncol, 2020, 38: 3129-3137. DOI: 10.1200/JCO.20.00803
[85] Cheng H, Yang J, Zhao J, et al. 177 Camrelizumab combined with apatinib for refractory gestational trophoblastic neoplasia: A phase 2, single-arm, prospective Study[J]. Int J Gynecol Cancer, 2020, 30: A76-A77. http://www.researchgate.net/publication/346883145_177_Camrelizumab_combined_with_apatinib_for_refractory_gestational_trophoblastic_neoplasia_A_phase_2_single-arm_prospective_Study
[86] Curti BD, Faries MB. Recent Advances in the Treatment of Melanoma[J]. N Engl J Med, 2021, 384: 2229-2240. DOI: 10.1056/NEJMra2034861
[87] Indini A, Di Guardo L, Cimminiello C, et al. Investigating the role of immunotherapy in advanced/recurrent female genital tract melanoma: a preliminary experience[J]. J Gynecol Oncol, 2019, 30: e94. DOI: 10.3802/jgo.2019.30.e94
[88] Frommer RS, Mileshkin L, Manzyuk L, et al. Pembroli-zumab for Vulvar Squamous Cell Carcinoma: Results From the Phase 2 KEYNOTE-158 Study[C/OL]. Society of Gynecological Oncology 2021 Virtual Annual Meeting on Women's Cancer; 2021. (2021-03-19)[2021-08-23]. https://www.gynecologiconcology-online.net/article/S0090-8258(21)00728-9/fulltext.
[89] Haanen JBAG, Carbonnel F, Robert C, et al. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up[J]. Ann Oncol, 2017, 28: iv119-iv142. DOI: 10.1093/annonc/mdx225
[90] Puzanov I, Diab A, Abdallah K, et al. Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group[J]. J Immunother Cancer, 2017, 5: 95. DOI: 10.1186/s40425-017-0300-z
[91] National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Management of Immunotherapy-Related Toxicities (Version 3. 2021)[EB/OL]. [2021-08-13]. https://www.nccn.org/professionals/physician_gls/pdf/immuno-therapy.pdf.
[92] Teufel A, Zhan T, Härtel N, et al. Management of immune related adverse events induced by immune checkpoint inhibition[J]. Cancer Lett, 2019, 456: 80-87. DOI: 10.1016/j.canlet.2019.04.018
[93] Bertrand A, Kostine M, Barnetche T, et al. Immune related adverse events associated with anti-CTLA-4 antibodies: systematic review and meta-analysis[J]. BMC Med, 2015, 13: 211. DOI: 10.1186/s12916-015-0455-8
[94] Wang PF, Chen Y, Song SY, et al. Immune-Related Adverse Events Associated with Anti-PD-1/PD-L1 Treatment for Malignancies: A Meta-Analysis[J]. Front Pharmacol, 2017, 8: 730. DOI: 10.3389/fphar.2017.00730
[95] Wang DY, Salem JE, Cohen JV, et al. Fatal Toxic Effects Associated With Immune Checkpoint Inhibitors: A Syste-matic Review and Meta-analysis[J]. JAMA Oncol, 2018, 4: 1721-1728. DOI: 10.1001/jamaoncol.2018.3923
[96] Yuen C, Fleming G, Meyers M, et al. Myasthenia gravis induced by avelumab[J]. Immunotherapy, 2019, 11: 1181-1185. DOI: 10.2217/imt-2019-0106
[97] Minion LE, Tewari KS. Cervical cancer-State of the science: From angiogenesis blockade to checkpoint inhibition[J]. Gynecol Oncol, 2018, 148: 609-621. DOI: 10.1016/j.ygyno.2018.01.009
[98] Naidoo J, Wang X, Woo KM, et al. Pneumonitis in Patients Treated With Anti-Programmed Death-1/Programmed Death Ligand 1 Therapy[J]. J Clin Oncol, 2017, 35: 709-717. DOI: 10.1200/JCO.2016.68.2005
[99] Naidoo J, Page DB, Li BT, et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies[J]. Ann Oncol, 2015, 26: 2375-2391. DOI: 10.1093/annonc/mdv383
[100] Khunger M, Rakshit S, Pasupuleti V, et al. Incidence of Pneumonitis With Use of Programmed Death 1 and Programmed Death-Ligand 1 Inhibitors in Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis of Trials[J]. Chest, 2017, 152: 271-281. DOI: 10.1016/j.chest.2017.04.177
[101] Nishino M, Giobbie-Hurder A, Hatabu H, et al. Incidence of Programmed Cell Death 1 Inhibitor-Related Pneumonitis in Patients With Advanced Cancer: A Systematic Review and Meta-analysis[J]. JAMA Oncol, 2016, 2: 1607-1616. DOI: 10.1001/jamaoncol.2016.2453
[102] Suresh K, Voong KR, Shankar B, et al. Pneumonitis in Non-Small Cell Lung Cancer Patients Receiving Immune Checkpoint Immunotherapy: Incidence and Risk Factors[J]. J Thorac Oncol, 2018, 13: 1930-1939. DOI: 10.1016/j.jtho.2018.08.2035
[103] Cho JY, Kim J, Lee JS, et al. Characteristics, incidence, and risk factors of immune checkpoint inhibitor-related pneumonitis in patients with non-small cell lung cancer[J]. Lung Cancer, 2018, 125: 150-156. DOI: 10.1016/j.lungcan.2018.09.015
[104] Champiat S, Lambotte O, Barreau E, et al. Management of immune checkpoint blockade dysimmune toxicities: a collaborative position paper[J]. Ann Oncol, 2016, 27: 559-574. DOI: 10.1093/annonc/mdv623
[105] Nakajima EC, Lipson EJ, Brahmer JR. Challenge of Rechallenge: When to Resume Immunotherapy Following an Immune-Related Adverse Event[J]. J Clin Oncol, 2019, 37: 2714-2718. DOI: 10.1200/JCO.19.01623
[106] Champiat S, Ferrara R, Massard C, et al. Hyperprogresive disease: recognizing a novel pattern to improve patient management[J]. Nat Rev Clin Oncol, 2018, 15: 748-762. DOI: 10.1038/s41571-018-0111-2
[107] Saâda-Bouzid E, Defaucheux C, Karabajakian A, et al. Hyperprogression during anti-PD-1/PD-L1 therapy in patients with recurrent and/or metastatic head and neck squamous cell carcinoma[J]. Ann Oncol, 2017, 28: 1605-1611. DOI: 10.1093/annonc/mdx178
[108] Ferrara R, Mezquita L, Texier M, et al. Hyperprogresive disease in patients with advanced non-small cell lung cancer treated with PD-1/ PD-L1 inhibitors or with single-agent chemotherapy[J]. JAMA Oncol, 2018, 4: 1543-1552. DOI: 10.1001/jamaoncol.2018.3676
[109] Kato S, Goodman A, Walavalkar V, et al. Hyperprogres-sors after Immunotherapy: Analysis of Genomic Alterations Associated with Accelerated Growth Rate[J]. Clin Cancer Res, 2017, 23: 4242-4250. DOI: 10.1158/1078-0432.CCR-16-3133
[110] Sharon E. Can an Immune Checkpoint Inhibitor (Sometimes) Make Things Worse?[J]. Clin Cancer Res, 2017, 23: 1879-1881. DOI: 10.1158/1078-0432.CCR-16-2926
[111] Park JH, Chun SH, Lee YG, et al. Hyperprogressive disease and its clinical impact in patients with recurrent and/or metastatic head and neck squamous cell carcinoma treated with immune-checkpoint inhibitors: Korean cancer study group HN 18-12[J]. J Cancer Res Clin Oncol, 2020, 146: 3359-3369. DOI: 10.1007/s00432-020-03316-5
[112] Leonardi GC, Gainor JF, Altan M, et al. Safety of Programmed Death-1 Pathway Inhibitors Among Patients With Non-Small-Cell Lung Cancer and Preexisting Autoimmune Disorders[J]. J Clin Oncol, 2018, 36: 1905-1912. DOI: 10.1200/JCO.2017.77.0305
[113] Spigel DR, McCleod M, Jotte RM, et al. Safety, Efficacy, and Patient-Reported Health-Related Quality of Life and Symptom Burden with Nivolumab in Patients with Advanced Non-Small Cell Lung Cancer, Including Patients Aged 70 Years or Older or with Poor Performance Status (CheckMate 153)[J]. J Thorac Oncol, 2019, 14: 1628-1639. DOI: 10.1016/j.jtho.2019.05.010
[114] Felip E, Ardizzoni A, Ciuleanu T, et al. CheckMate 171: A phase 2 trial of nivolumab in patients with previously treated advanced squamous non-small cell lung cancer, including ECOG PS 2 and elderly populations[J]. Eur J Cancer, 2020, 127: 160-172. DOI: 10.1016/j.ejca.2019.11.019
[115] Uldrick TS, Gonçalves PH, Abdul-Hay M, et al. Assessment of the Safety of Pembrolizumab in Patients With HIV and Advanced Cancer-A Phase 1 Study[J]. JAMA Oncol, 2019, 5: 1332-1339. DOI: 10.1001/jamaoncol.2019.2244
[116] Gonzalez-Cao M, Morán T, Dalmau J, et al. Phase Ⅱ study of durvalumab (MEDI4736) in cancer patients HIV-1-infected[J]. J Clin Oncol, 2019, 37: 2501. DOI: 10.1200/JCO.19.00363
[117] d'Izarny-Gargas T, Durrbach A, Zaidan M. Efficacy and tolerance of immune checkpoint inhibitors in transplant patients with cancer: A systematic review[J]. Am J Transplant, 2020, 20: 2457-2465. DOI: 10.1111/ajt.15811
[118] Arbour KC, Mezquita L, Long N, et al. Impact of Baseline Steroids on Efficacy of Programmed Cell Death-1 and Programmed Death-Ligand 1 Blockade in Patients With Non-Small-Cell Lung Cancer[J]. J Clin Oncol, 2018, 36: 2872-2878. DOI: 10.1200/JCO.2018.79.0006
[119] 广东省药学会. 免疫检查点抑制剂全程化药学服务指引(2019年版)[J]. 今日药学, 2020, 30: 289-307. DOI: 10.12048/j.issn.1674-229X.2020.05.001 [120] Wijn DH, Groeneveld GH, Vollaard AM, et al. Influenza vaccination in patients with lung cancer receiving anti-programmed death receptor 1 immunotherapy does not induce immune-related adverse events[J]. Eur J Cancer, 2018, 104: 182-187. DOI: 10.1016/j.ejca.2018.09.012
[121] Burotto M, Gormaz JG, Samtani S, et al. Viable Pregnancy in a patient with metastatic melanoma treated with double checkpoint immunotherapy[J]. Semin Oncol, 2018, 45: 164-169. DOI: 10.1053/j.seminoncol.2018.03.003
-
期刊类型引用(2)
1. 殷善开. 头颈部副神经节瘤诊疗进展的回顾与展望殷善开~1. 临床耳鼻咽喉头颈外科杂志. 2024(09): 773-776 . 百度学术
2. 浦佳希,韩同磊,杨少飞,魏小龙,杨光华,赵滨,赵志青. 颈动脉体瘤的研究及治疗进展. 中华普通外科杂志. 2023(07): 553-556 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 1893
- HTML全文浏览量: 195
- PDF下载量: 686
- 被引次数: 3