应用机器学习建立北京协和医院急性肾损伤预测模型: 单中心研究计划

郑华, 张萌, 赵泽, 林剑峰, 国秀芝, 夏鹏, 任菲, 邱玲, 周炯, 陈丽萌

郑华, 张萌, 赵泽, 林剑峰, 国秀芝, 夏鹏, 任菲, 邱玲, 周炯, 陈丽萌. 应用机器学习建立北京协和医院急性肾损伤预测模型: 单中心研究计划[J]. 协和医学杂志, 2021, 12(6): 913-921. DOI: 10.12290/xhyxzz.2021-0519
引用本文: 郑华, 张萌, 赵泽, 林剑峰, 国秀芝, 夏鹏, 任菲, 邱玲, 周炯, 陈丽萌. 应用机器学习建立北京协和医院急性肾损伤预测模型: 单中心研究计划[J]. 协和医学杂志, 2021, 12(6): 913-921. DOI: 10.12290/xhyxzz.2021-0519
ZHENG Hua, ZHANG Meng, ZHAO Ze, LIN Jianfeng, GUO Xiuzhi, XIA Peng, REN Fei, QIU Ling, ZHOU Jiong, CHEN Limeng. Establishing AKI Warning System in Peking Union Medical College Hospital from a Machine Learning Approach: A Single-center Research Protocol[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(6): 913-921. DOI: 10.12290/xhyxzz.2021-0519
Citation: ZHENG Hua, ZHANG Meng, ZHAO Ze, LIN Jianfeng, GUO Xiuzhi, XIA Peng, REN Fei, QIU Ling, ZHOU Jiong, CHEN Limeng. Establishing AKI Warning System in Peking Union Medical College Hospital from a Machine Learning Approach: A Single-center Research Protocol[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(6): 913-921. DOI: 10.12290/xhyxzz.2021-0519

应用机器学习建立北京协和医院急性肾损伤预测模型: 单中心研究计划

基金项目: 

国家自然科学基金 81970607

国家自然科学基金 81470937

国家自然科学基金 82000663

首都卫生发展科研专项 2020-1-4014

首都卫生发展科研专项 2020-2-4018

北京市自然科学基金-海淀原始创新联合基金资助项目 L202035

北京市示范性研究型病房建设项目 BCRW202001

北京协和医学院2020年度校级本科教育教学改革立项项目 2020zlgc0101

北京市科技重大专项首都临床特色应用研究与成果推广 Z171100001017196

中央高校基本科研业务费项目 3332019029

中央高校基本科研业务费项目 3332021004

中国医学科学院医学与健康科技创新工程 2020-I2M-C & T-A-001

中国医学科学院医学与健康科技创新工程 2021-I2M-C & T-B-011

详细信息
    通讯作者:

    邱玲  电话:010-69159712,E-mail: lingqiubj@163.com

    周炯  电话:010-69151891,E-mail: pumchzhoujiong@sina.com

    陈丽萌  电话:010-69154056,E-mail: chenlpumch@163.com

    郑华、张萌对本文同等贡献

  • 中图分类号: R445

Establishing AKI Warning System in Peking Union Medical College Hospital from a Machine Learning Approach: A Single-center Research Protocol

Funds: 

National Natural Scientific Foundation of China 81970607

National Natural Scientific Foundation of China 81470937

National Natural Scientific Foundation of China 82000663

Capital's Funds for Health Improvement and Research 2020-1-4014

Capital's Funds for Health Improvement and Research 2020-2-4018

Beijing Natural Science Foundation L202035

Beijing Construction Fund for Model Research Ward BCRW202001

Peking Union Medical College Undergraduate Education Renovation Fund 2020zlgc0101

the Capital Specialized Clinical Application Project Z171100001017196

Central University Fundamental Research Funding Project 3332019029

Central University Fundamental Research Funding Project 3332021004

CAMS Innovation Fund for Medical Sciences 2020-I2M-C & T-A-001

CAMS Innovation Fund for Medical Sciences 2021-I2M-C & T-B-011

More Information
  • 摘要:
      研究背景及目的  院内急性肾损伤(acute kidney injury, AKI)是住院患者住院时间延长和预后不良的独立危险因素。利用住院电子病历系统(electronic medical record, EMR)早期预警模型对AKI进行识别并及时干预,对降低AKI发生率、减轻AKI严重程度并改善患者预后具有重要意义。目前基于EMR的AKI相关研究主要针对单学科病房住院患者,采用传统统计学方法进行回顾性分析,尚缺乏基于人工智能技术的大规模多学科病房含时效信息的AKI风险预警模型并以此进行前瞻性干预的研究。本研究计划基于全病程全病历系统收集住院患者的完整临床信息,通过大样本数据及机器学习算法,旨在建立多学科病房的AKI预测模型。
      方法  本研究计划分为回顾性研究和前瞻性研究两部分。回顾性研究中,纳入2016年1月1日至2020年12月31日北京协和医院所有成年住院患者。通过全病程全病历系统,收集其一般资料、临床诊断、生命体征、实验室检查结果和住院病历等相关信息,采用Logistic回归、朴素贝叶斯、随机森林、支持向量机、梯度提升决策树、循环神经网络的机器学习算法,构建可预测AKI发生风险的预警模型,并对模型的准确性进行验证。前瞻性研究纳入北京协和医院连续12个月的所有成年住院患者。其中AKI预警系统启动前6个月的所有成年住院患者为对照组,AKI预警系统启动后6个月的所有成年住院患者为干预组。干预组中,将AKI预警系统嵌入EMR,对所有住院24 h以上的患者每6小时进行1次实时未来48 h内AKI风险评估,并对高危患者进行早期干预。对照组无AKI风险评估及报警提示,无相应干预措施。比较两组患者AKI与AKI 3级发生率、AKI缓解率、终末期肾病进展率、住院期间死亡率及住院时间、住院费用等指标差异。
      预期结果  回顾性研究中,共纳入约127 000例住院患者,其中院内AKI患者14 605例。构建的多学科病房AKI预测模型可提前24~48 h预测住院患者发生AKI的风险,其中提前24 h预测AKI的受试者工作特征曲线下面积>0.80。前瞻性研究中,纳入34 748例住院患者,其中干预组和对照组均为17 374例。干预组肾脏替代治疗的时间、住院时间较对照组缩短(P<0.05),肾脏替代治疗的比例、AKI与AKI 3级发生率、终末期肾病进展率、住院期间死亡率、住院费用均低于对照组(P<0.05),AKI缓解率高于对照组(P<0.05)。
      预期结论  基于EMR构建的多学科病房AKI预测模型可提前24~48 h预测住院患者发生AKI的风险,降低AKI发生率及其严重程度,改善患者预后。
    Abstract:
      Background and Objective  In-hospital acute kidney injury (AKI) has a significant negative impact on patients' outcome and the length of hospital stay. It is significantly important to use the early warning of electronic medical records (EMR) to identify and intervene AKI in a timely manner so as to reduce the severity of AKI and to improve the prognosis of patients. At present, AKI-related research based on the EMR system mainly uses traditional statistical methods for retrospective analysis, mainly for inpatients in single-disciplinary wards, and there is still a lack of early warning models of AKI risk based on artificial intelligence technology in large-scale multi-disciplinary wards with time-sensitive information and further prospective research. This study aims to develop a multiple-ward AKI prediction model tailored for general hospitals in China based on machine-learning algorithms and big data acquired by the EMR system.
      Methods  This single-center study consists of both a retrospective observational study and a prospective study. All hospitalized adult patients admitted in Peking Union Medical College Hospital (PUMCH) between 2016 and 2020 were included in the retrospective study. Logistic regression, naive Bayes, random forest, support vector machine, gradient boosting and recurrent neural network will be used for modeling based on demographics, clinical feature, vital signs, imaging, lab results and hospitalized medical records, which aims to predict AKI 24-48 h in advance and will be internally validated. The prospective study intends to include all adult inpatients in PUMCH for 12 consecutive months. Among them, all adult hospitalized patients within 6 months before the AKI early warning system is launched will be of the control group, and all adult hospitalized patients within 6 months after the AKI early warning system is launched will be of the intervention group. In the intervention group, the AKI early warning system will be embedded in the EMR, and all patients hospitalized for more than 24 hours will be assessed for AKI risk in the next 48 hours in real time every 6 hours. Early intervention will be carried out for high-risk patients. The control group does not have above-mentioned high-risk and alarm prompts of AKI, and no corresponding intervention measures. The incidence of AKI and AKI grade 3, AKI remission rate, end-stage renal disease progression rate, mortality during hospitalization, length of stay, hospitalization expenses and other indicators will be compared between the two groups.
      Expected Results  An estimated number of 127 000 in-hospital patients will be included in the retrospective study, among which 14 605 patients suffer from AKI. The prediction model is expected to predict AKI 24-48 h in advance and the aim for area under receiver operating characteristics curve should be > 0.80. In the prospective study, 34 748 inpatients will be enrolled, including 17 374 in both the intervention group and the control group. The duration time of renal replacement therapy and length of hospital stay in the intervention group should be shorter than those in the control group (P < 0.05); the proportion of renal replacement therapy, the incidence of AKI and AKI 3, the rate of progression of end-stage renal disease, the mortality rate during hospitalization, and the hospitalization cost should be lower than those in the control group (P < 0.05), and the AKI remission rate should be higher than that in the control group (P < 0.05).
      Expected conclusion  EMR-based multi-ward AKI prediction model will predict AKI risk 24-48 h in advance, which will lower AKI incidence and severity, and improve clinical outcomes.
  • 乳腺癌已成为全球女性发病率最高的恶性肿瘤,在每年因癌症导致死亡的病因中排名第5,是全球广泛关注的重点疾病[1-2]。早期诊断和有效治疗是降低乳腺癌死亡率的关键[3]。乳腺癌腋窝淋巴结转移(axillary lymph node metastasis,ALNM)的术前准确评估对于手术治疗决策至关重要,而传统的腋窝超声对少量和微转移识别困难[4],无法满足精准治疗需求。近年来,随着人工智能和影像技术的快速发展,机器学习领域涌现出了影像组学和深度学习[5]两大热门技术,通过将医学影像资料转化为高通量数据,综合患者的多维临床信息建立预测模型,为解决上述问题提供了新的研究方向。

    目前乳腺癌ALNM诊断的金标准为腋窝淋巴结清扫(axillary lymph node dissection,ALND)和前哨淋巴结活检(sentinel lymph node biopsy,SLNB)。根据美国临床肿瘤学协会Z0011试验结果[6],最新临床指南指出T1或T2期原发浸润性乳腺癌女性患者,在腋窝淋巴结触诊阴性时,存在1~2个前哨淋巴结转移(sentinel lymph node metastasis,SLNM)无需行ALND,仅接受放射治疗作为替代疗法,从而减少术后并发症[7]。这一转变也对ALNM状态的术前评估提出了新要求:应识别淋巴结的肿瘤负荷,而不能仅限于判断是否发生转移。

    目前,评估乳腺癌术前腋窝淋巴结状态的主要无创影像学评估方法为超声[8-9]。然而,不同研究应用超声诊断ALNM的效果存在较大差异,其灵敏度和特异度范围分别为18.5%~87.1%和39.5%~98.0%[8-13]。Ahmed等[14]研究表明,超声提示ALNM阳性的患者中43.2% 存在较低的淋巴结肿瘤负荷(SLNM<3个)。根据最新指南,这意味着近1/2超声评估ALNM阳性的患者可免于ALND。但由于超声对腋窝肿瘤负荷的甄别能力相对有限,迫切需要一种更有效的方法解决此问题。

    借助预测模型评估术前乳腺癌ALNM是临床广为接受的方法。目前,被广泛接受的预测模型为纪念斯隆-凯特琳癌症中心(Memorial Sloan-Kettering Cancer Center,SKCC)模型和Tenon评分系统,后续研究建立的模型也多与之对比。SKCC模型由Bevilacqua等[15]建立,主要用于预测浸润性乳腺癌患者的SLNM,该模型应用于其他中心的受试者操作特征曲线下面积(area under the curve,AUC)范围为0.58~0.81[16-17]。Tenon评分系统由Barranger等[18]建立,主要用于预测SLNB结果阳性的患者发生非SLNM的风险,该模型的AUC范围为0.63~0.82[17-19]。但上述预测模型主要纳入原发灶的病理信息,而影像学特征有限,且模型准确性尚未达到临床应用要求。

    近年来,影像组学及深度学习技术在乳腺癌影像分析中的应用成为研究热点[20]。两者均可结合患者的特征数据(如临床信息、免疫组化、基因信息等)构建临床预测模型,辅助医生进行诊断,提高决策的准确性。影像组学是一类数据挖掘技术,通过提取图像深层次、肉眼不可识别的高通量特征,将影像视觉分析转化为可量化的特征进行研究。影像组学的流程主要包括医学影像采集、图像前处理、特征提取及筛选、模型构建与分类器等。影像组学提取的特征由业界专家基于先验知识,通过图像像素值及几何关系等多阶参数的计算公式确定。深度学习是一种模拟人脑分析的技术,通过构建神经网络,提取抽象特征,构建临床预测模型。深度学习提取的特征为特定研究问题的特定指标。两者均为从图像中提取数据特征的方法,但前者是由先验知识所获得的人为设计的可知特征,相对固定; 而后者的提取过程则被称为“黑匣子”,每组模型所提取的特征差异较大。根据哈佛人工智能医学研究组提出的定义[21],广义影像组学(radiomics)应包括传统影像组学(engineered features)和深度学习(deep learning),但由于“影像组学”概念早年引入我国时用于指代前者[22],为便于读者理解,本文统一使用“影像组学”(与“深度学习”并列),而标题中的“影像组学”则指代广义的概念。

    乳腺癌原发灶的形态特征与淋巴结转移高度相关[23],然而在临床研究中,实现术前影像所见淋巴结与病理诊断的淋巴结逐一对照难度较大,因此多数研究针对乳腺癌原发灶的形态进行特征提取以预测淋巴结转移。

    目前,影像组学研究均采用Pyradiomics程序进行组学特征提取,主要包括一阶特征、纹理特征、小波特征等广泛认可的影像组学特征[24-27]。特征数量增加使得计算更为复杂,导致预测模型性能下降,可使用拉索回归筛选特征,构建预测模型[28]。此类研究流程设计相对固定,主要差别在于纳入人群及分析部位的不同,Qiu等[27]和Lee等[24]的临床预测模型未对乳腺癌患者的分期进行设定,Gao等[25]和Yu等[26]的临床预测模型仅纳入早期乳腺癌患者,临床上判定此类患者淋巴结转移的需求更大。上述研究在训练集和验证集中的AUC范围分别为0.82~0.86和0.72~0.81。相较于Bevilacqua等[15]等和Barranger等[18]的临床预测模型,超声影像组学预测模型的准确度显著提高。Qiu等[27]和Yu等[26]的研究发现,将医师对超声图像上淋巴结状态的评估结果[29]与影像组学特征相结合,其AUC可提升5%~10%,提示基于淋巴结的传统影像特征虽难以与病理结果一一对应,但影像显示的淋巴结结构仍与转移淋巴结密切关联。除此之外,Gao等[25]根据最新指南,将评估重点放在淋巴结肿瘤负荷(转移淋巴结个数≤2或>2)上,获得了良好的预测结果。

    此外,不同学者提出了改进超声影像组学分析的方法。由于超声图像的操作者依赖性,不同医师对病灶的放大程度不同,最终提取的病灶图像比例尺也不尽相同,即图像上的肿瘤面积与实际切面面积无法对应。基于此,Gao等[25]和Yu等[26]在影像组学特征之外加入实际肿瘤径线特征建模。而Lee等[24]尝试将图像像素的标尺统一化以解决此问题,虽然研究未使用同一批数据对两种方法进行比较,但仍为未来研究提供了新思路。Gao等[25]尝试对影像组学模型纳入的高通量特征进行一定程度的形象化解释,并对Pyradiomics模型提出了改进建议,如加入方向特征以适应肿瘤的生长方向与良/恶性倾向存在相关性这一生物学指征,即目前共识认为垂直于皮肤生长的肿瘤较平行于皮肤生长者更具有恶性倾向[30]

    目前,影像组学模型预测乳腺癌淋巴结转移的诊断效能AUC仅为80%左右,研究人员将目光投向了深度学习方法。采用深度学习方法的研究纳入的病例和图片数量均较影像组学更多,其独立外验证集AUC可提升至90%左右。Zhou等[31]最早在该领域采用深度学习方法,其研究纳入756例淋巴结阴性的早期乳腺癌患者的974张原发灶图像,并率先在78例患者的独立外验证集验证模型,其AUC达0.89。Sun等[32]首次将肿瘤的感兴趣区勾画分为肿瘤内部区域和周边区域(肿瘤轮廓外5 mm),并尝试对比两种不同区域及相结合后3种情况的诊断效能,采用深度学习和影像组学方法与3种勾画区域排列组合构建了6个预测模型,结果显示深度学习模型相较于影像组学模型的预测效果更好,且将内部与周边区域结合分析的诊断效能更好(深度学习模型结合分析内部及周边区域法的验证集AUC为0.933),而后者也与针对瘤周区域的传统影像学研究结果相符合[33-34],为今后的研究提出了新的感兴趣区勾画要求。Zheng等[35]的模型首次将弹性成像图像纳入研究,既可区分淋巴结有无转移(AUC为0.902),又可判断淋巴结肿瘤转移负荷(AUC为0.905),引起了广泛关注。

    虽然基于乳腺癌原发灶的形态分析取得了较好效果,但目前有研究显示,将医师对影像图像上的淋巴结判断结果纳入最终模型,其效果较未添加时更好。由于医师行普通腋窝超声检查时无法明确所探查淋巴结是否为前哨淋巴结,这可能说明腋窝各淋巴结群组的影像表现与腋窝前哨淋巴结转移结果存在一定联系[26-27, 36]。索静峰等[37]分析了158例乳腺癌患者的腋窝淋巴结弹性图像及二维图像,并将弹性图像硬度值的彩色值进行转化(称为“软度值”图),纳入从两种图像中提取的部分影像组学特征,结果显示其灵敏度达86.96%,为未来相关研究的开展指明了方向。但因该研究纳入的病例数较少,且提取的影像组学特征不够全面,未使用目前广泛认可的Pyradiomics工具,导致其结果的推广受限。

    目前大多数研究着眼于乳腺癌腋窝SLNM或前哨淋巴结肿瘤负荷的评估,但近年来非SLNM的评估也逐渐引起关注。Z0011试验证实出现1~2个腋窝SLNM的患者后续发生非SLNM的风险非常低[6]。研究发现,腋窝前哨淋巴结阳性患者中40%~70%未发生非SLNM[38],即这些患者并未从区域放疗和ALND中获益。Guo等[36]选择最大径线图像及其垂直面超声图像,采用深度学习影像组学算法分别构建了预测前哨淋巴结(DLR-1)和非前哨淋巴结(DLR-2)转移风险的模型,当两者均评估为转移低风险时,则输出低风险,反之则输出高风险; 使用决策树法将高风险-前哨淋巴结患者输入DLR-2模型可进一步评估非SLNM的风险。DLR-1和DLR-2两个模型在训练集/验证集上的AUC分别为0.876/0.848和0.909/0.812。值得注意的是,该研究的假阴性率<5%,即模型的假阴性率低于SLNB(9.8%)和ALND(5%),提示该模型有助于免除ALND。与前文所述的经典MSKCC模型[15]相比,该模型在训练集与验证集中的效果均显著提升。

    目前各类医学影像技术(CT、MRI、核医学、超声)在图像获取和重建协议上存在较大差异,缺乏统一规范的标准和流程,因此难以进行结合分析。同时,各医院所选用的设备及参数设置也存在差异,建立模型的外推适用性存在挑战。因此,影像组学研究的数据需在大样本和规范化中寻求平衡,高质量的原始图像标准化数据库的建立是未来研究不可逾越的关键所在。此外,影像组学技术的部分操作步骤,需人工参与调节,尤其在图像前处理过程和感兴趣区勾画中,操作者误差可能难以复现,且每个阶段的细微变化均可能影响最终结果[39]。深度学习方法可通过自动学习预测特征以规避这些误差,直接输出模型,其特征生成过程被称为“黑匣子”[40],即针对不同的研究目的,深度学习方法所提取的特征不同,且缺乏解释性。而影像组学特征已初步形成了规范化体系,有利于研究的稳定开展。

    值得注意的是,目前的研究多聚焦于利用原发灶的超声图像预测淋巴结转移,未来使用定位较好的前哨淋巴结图像预测可能为新思路。为探讨肿瘤异质性与淋巴结转移的相关性,预测模型仅纳入单个病灶的情况,对于多个病灶发生转移的复杂情况未涉及,对其推广泛化产生一定的影响,各个模型的优劣尚需更多临床研究进一步验证。

    影像组学和深度学习研究已在预测乳腺癌淋巴结转移方面取得了较好效果,有望为临床决策提供重要帮助。超声造影、弹性成像、彩色多普勒技术等多模态超声影像学技术尚未结合起来,而多模态影像学结合乳腺MRI、乳腺X线等影像结果的联合诊断已是目前临床公认的诊疗常规。因此,多模态影像综合预测模型的设计是未来研究的方向。

    作者贡献:郑华负责实验方案具体设计及文章撰写;张萌负责病案信息提取、清理、统计;赵泽、任菲负责机器学习相关方案设计;林剑峰负责统计方法设计及部分文章撰写;国秀芝负责检验科具体数据提取、清理及统计;夏鹏负责相关临床特征变量选取及临床干预方案设计;邱玲负责检验科相关方案设计、工作协调与合作;周炯负责病案科相关方案设计、工作协调与合作;陈丽萌成立该项目,负责整体框架设计并协调合作。
    利益冲突:
  • 图  1   整体研究设计路线图

    PUMCH:北京协和医院; SCr: 血肌酐;EMR:电子病历系统;AKI:急性肾损伤

    图  2   预测模型的时间结构及预测的AKI发生风险与SCr变化

    A.以1例经门诊就诊并入院治疗的患者为例,该患者电子病历所有数据信息被均分为4个6 h为1个单位的时间段,图中以正方形表示。所有无具体时间的数据信息均归为该天的第5个时间段。现对患者入院后第1天(D1)第3个时段的数据进行分析。除该时间段数据外,同时将其近48 h及更早期的既往数据一起纳入模型。患者在住院第3天(D3)的第3个时间段发生了AKI事件。B.基于D1第3个时间段的数据,预测模型认为未来(以48 h内为例)发生AKI的概率达报警阈值,与第3天(D3)第3时间段内真实AKI事件对应,预测结果准确。C. 患者住院期间SCr变化趋势,同时利用机器学习进行SCr预测,结合SCr预测值,辅助AKI判断
    AKI、SCr:同图 1

    图  3   前瞻性研究中干预组干预措施示意图

    AKI:同图 1

  • [1]

    Okusa MD, Davenport A. Reading between the (guide)lines-the KDIGO practice guideline on acute kidney injury in the individual patient[J]. Kidney Int, 2014, 85: 39-48. DOI: 10.1038/ki.2013.378

    [2]

    Tang X, Chen D, Yu S, et al. Acute kidney injury burden in different clinical units: Data from nationwide survey in China[J]. PLoS One, 2017, 12: e0171202. DOI: 10.1371/journal.pone.0171202

    [3]

    Chawla LS, Amdur RL, Shaw AD, et al. Association bet-ween AKI and long-term renal and cardiovascular outcomes in United States veterans[J]. Clin J Am Soc Nephrol, 2014, 9: 448-456. DOI: 10.2215/CJN.02440213

    [4]

    Ikizler TA, Parikh CR, Himmelfarb J, et al. A prospective cohort study of acute kidney injury and kidney outcomes, cardiovascular events, and death[J]. Kidney Int, 2021, 99: 456-465. DOI: 10.1016/j.kint.2020.06.032

    [5]

    Yang L, Xing G, Wang L, et al. Acute kidney injury in China: a cross-sectional survey[J]. Lancet, 2015, 386: 1465-1471. DOI: 10.1016/S0140-6736(15)00344-X

    [6]

    Cheng Y, Luo R, Wang K, et al. Kidney disease is associated with in-hospital death of patients with COVID-19[J]. Kidney Int, 2020, 97: 829-838. DOI: 10.1016/j.kint.2020.03.005

    [7]

    Kellum JA, Prowle JR. Paradigms of acute kidney injury in the intensive care setting[J]. Nat Rev Nephrol, 2018, 14: 217-230. DOI: 10.1038/nrneph.2017.184

    [8]

    Kolhe NV, Reilly T, Leung J, et al. A simple care bundle for use in acute kidney injury: a propensity score-matched cohort study[J]. Nephrol Dial Transplant, 2016, 31: 1846-1854. DOI: 10.1093/ndt/gfw087

    [9]

    Kolhe NV, Staples D, Reilly T, et al. Impact of Compliance with a Care Bundle on Acute Kidney Injury Outcomes: A Prospective Observational Study[J]. PLoS One, 2015, 10: e0132279. DOI: 10.1371/journal.pone.0132279

    [10]

    Chandrasekar T, Sharma A, Tennent L, et al. A whole system approach to improving mortality associated with acute kidney injury[J]. QJM, 2017, 110: 657-666. DOI: 10.1093/qjmed/hcx101

    [11]

    Hodgson LE, Roderick PJ, Venn RM, et al. The ICE-AKI study: Impact analysis of a Clinical prediction rule and Electronic AKI alert in general medical patients[J]. PLoS One, 2018, 13: e0200584. DOI: 10.1371/journal.pone.0200584

    [12]

    Cheng P, Waitman LR, Hu Y, et al. Predicting Inpatient Acute Kidney Injury over Different Time Horizons: How Early and Accurate?[J]. AMIA Ann Symp Proc, 2017, 2017: 565-574. http://europepmc.org/abstract/MED/29854121

    [13]

    Koyner JL, Adhikari R, Edelson DP, et al. Development of a Multicenter Ward-Based AKI Prediction Model[J]. Clin J Am Soc Nephrol, 2016, 11: 1935-1943. DOI: 10.2215/CJN.00280116

    [14]

    Tomasev N, Glorot X, Rae JW, et al. A clinically applic-able approach to continuous prediction of future acute kidney injury[J]. Nature, 2019, 572: 116-119. DOI: 10.1038/s41586-019-1390-1

    [15]

    Barton AL, Williams SBM, Dickinson SJ. Acute Kidney Injury in Primary Care: A Review of Patient Follow-Up, Mortality, and Hospital Admissions following the Introduction of an AKI Alert System[J]. Nephron, 2020, 144: 498-505. DOI: 10.1159/000509855

    [16]

    Wilson FP, Martin M, Yamamoto Y, et al. Electronic health record alerts for acute kidney injury: multicenter, randomized clinical trial[J]. BMJ, 2021, 372: m4786. http://www.bmj.com/content/372/bmj.m4786.abstract

    [17]

    Zhou LZ, Yang XB, Guan Y, et al. Development and Validation of a Risk Score for Prediction of Acute Kidney Injury in Patients With Acute Decompensated Heart Failure: A Prospective Cohort Study in China[J]. J Am Heart Assoc, 2016, 5: e004035.

    [18]

    Xu N, Zhang Q, Wu G, et al. Derivation and Validation of a Risk Prediction Model for Vancomycin-Associated Acute Kidney Injury in Chinese Population[J]. Ther Clin Risk Manag, 2020, 16: 539-550. DOI: 10.2147/TCRM.S253587

    [19]

    Li Y, Chen X, Wang Y, et al. Application of group LASSO regression based Bayesian networks in risk factors exploration and disease prediction for acute kidney injury in hospitalized patients with hematologic malignancies[J]. BMC Nephrol, 2020, 21: 162. DOI: 10.1186/s12882-020-01786-w

    [20] 王洪玲, 田洁, 韩涛. 失代偿性肝硬化伴发急性肾损伤的危险因素分析[J]. 中华肝脏病杂志, 2014, 22: 420-424. DOI: 10.3760/cma.j.issn.1007-3418.2014.06.005

    Wang HL, Tian J, Han T. Analysis of risk factors for acute kidney injury in patients with decompensated cirrhosis[J]. Zhonghua Ganzangbing Zazhi, 2014, 22: 420-424. DOI: 10.3760/cma.j.issn.1007-3418.2014.06.005

    [21] 冯芳, 陈宇, 陈伟, 等. 基于危险因素分层的急性肾损伤早期预警模型联合血液灌流在脓毒症患者中的应用: 一项前瞻性观察性先导性研究[J]. 中华危重病急救医学, 2020, 32: 814-818. DOI: 10.3760/cma.j.cn121430-20200326-00239

    Feng F, Chen Y, Chen W, et al. Application of a risk stratification-based model for prediction of acute kidney injury combined with hemoperfusion in patients with sepsis: a prospective, observational, pilot study[J]. Zhonghua Wei-zhongbing Jijiu Yixue, 2020, 32: 814-818. DOI: 10.3760/cma.j.cn121430-20200326-00239

    [22]

    Parreco J, Soe-Lin H, Parks JJ, et al. Comparing Machine Learning Algorithms for Predicting Acute Kidney Injury[J]. Am Surg, 2019, 85: 725-729. DOI: 10.1177/000313481908500731

    [23]

    Song X, Yu ASL, Kellum JA, et al. Cross-site transportability of an explainable artificial intelligence model for acute kidney injury prediction[J]. Nat Commun, 2020, 11: 5668. DOI: 10.1038/s41467-020-19551-w

  • 期刊类型引用(1)

    1. 毛铭阳,苏童,冯国栋,田旭,徐振潭,陈钰,张竹花,高志强,金征宇. 磁共振脑容积成像对颈静脉球瘤脑膜侵犯的诊断价值. 临床放射学杂志. 2022(04): 612-617 . 百度学术

    其他类型引用(0)

图(3)
计量
  • 文章访问数:  1525
  • HTML全文浏览量:  202
  • PDF下载量:  249
  • 被引次数: 1
出版历程
  • 收稿日期:  2021-07-06
  • 录用日期:  2021-08-04
  • 网络出版日期:  2021-10-29
  • 刊出日期:  2021-11-29

目录

/

返回文章
返回
x 关闭 永久关闭