Texture Analysis of Sequential Images of T2-weighted Imaging and Diffusion-weighted Imaging for Predicting the Efficacy of Chemoradiotherapy in Cervical Squamous Cell Carcinoma
-
摘要:目的 探讨MRI检查T2加权成像(T2-weighted imaging, T2WI)及弥散加权成像(diffusion-weighted imaging, DWI)图像纹理参数与宫颈鳞状细胞癌放化疗疗效的相关性。方法 回顾性纳入2015年2月至2016年1月北京协和医院接受放化疗的宫颈鳞状细胞癌患者,并根据其预后分为疾病进展组和疾病稳定组。采用TexRAD软件对两组患者放化疗前T2WI、DWI序列图像进行纹理分析,得到空间尺度滤波器(spatial scale filter,SSF)半径值为2、4、6的图像纹理参数。比较两组患者图像纹理参数差异,采用多因素Cox回归分析图像纹理参数与宫颈鳞状细胞癌患者放化疗疗效的相关性。采用受试者工作特征(receiver operating characteristic, ROC)曲线分析各图像纹理参数预测宫颈鳞状细胞癌放化疗后疾病进展的性能。结果 共121例符合纳入和排除标准的宫颈鳞状细胞癌患者入选本研究。其中疾病进展组46例,疾病稳定组75例。T2WI序列图像中,疾病进展组与疾病稳定组患者的图像纹理参数均值(SSF2、SSF4、SSF6)、偏度(SSF2、SSF4)、熵(SSF4、SSF6)均有显著性差异(P均<0.05);DWI序列图像中,疾病进展组与疾病稳定组患者的图像纹理参数均值(SSF2、SSF4、SSF6)、偏度(SSF4、SSF6)、峰度(SSF2、SSF4)均有显著性差异(P均<0.05)。多因素Cox回归分析结果显示,T2WI序列图像纹理参数均值(SSF2、SSF4、SSF6)及DWI序列图像纹理参数均值(SSF2、SSF6)、熵(SSF2、SSF4、SSF6)、偏度(SSF4、SSF6)与宫颈鳞状细胞癌放化疗疗效具有相关性(P<0.05)。ROC曲线分析结果显示,图像纹理参数均值(T2WI-SSF2、T2WI-SSF4、T2WI-SSF6、DWI-SSF2、DWI-SSF6)、偏度(DWI-SSF6)可预测宫颈鳞状细胞癌放化疗后的疾病进展,曲线下面积(area under the curve, AUC)为0.625~0.746。其中,均值(T2WI-SSF4)的预测效能最高(AUC:0.746),其次为均值(T2WI-SSF2,AUC:0.725)、均值(T2WI-SSF6,AUC:0.703)。结论 基线MRI检查T2WI、DWI图像纹理参数与宫颈鳞状细胞癌放化疗疗效具有相关性,其均值、偏度可预测宫颈鳞状细胞癌放化疗后疾病进展,且以均值的预测效能最高。Abstract:Objective To investigate the correlation of the texture parameters of T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI) with the efficacy of chemoradiotherapy in cervical squamous cell carcinoma.Methods Patients with squamous cell carcinoma of the cervix that underwent chemoradiotherapy from February 2015 to January 2016 in Peking Union Medical College Hospital were included retrospectively, and were divided into the disease-progressive group and the disease-stable group according to their prognosis. Texture analysis of baseline T2WI and DWI images before chemoradiotherapy was carried out with Texrad software, and the texture parameters of spatial scale filter (SSF) with radius values of 2, 4 and 6 were obtained. The differences of texture parameters between the two groups were compared, and the correlation between the texture parameters and the curative of chemoradiotherapy in patients with cervical squamous cell carcinoma was analyzed by multivariate Cox regression. Receiver operating characteristic (ROC) curve was used to analyze the performance of texture parameters in predicting disease progression after chemoradiotherapy in patients with cervical squamous cell carcinoma.Results A total of 121 patients with squamous cell carcinoma of the cervix that met the inclusion and exclusion criteria were enrolled in this study. There were 46 cases in the disease-progressive group and 75 cases in the disease-stable group. In T2WI sequential images, there were significant differences in the texture parameters of means (SSF2, SSF4, SSF6), skewness (SSF2, SSF4), and entropy (SSF4, SSF6) between disease-progressive group and disease-stable group (all P < 0.05). In DWI sequential images, there were significant differences in the texture parameters of means (SSF2, SSF4, SSF6), skewness (SSF4, SSF6), and kurtosis (SSF2, SSF4) between the two groups (all P < 0.05). Multivariate Cox regression analysis showed that the texture parameter of means (SSF2, SSF4, SSF6) of T2WI and the texture parameters of means (SSF2, SSF6), entropy (SSF2, SSF4, SSF6) and skewness (SSF4, SSF6) of DWI were correlated with the efficacy of chemoradiotherapy in patients with cervical squamous cell carcinoma (P < 0.05). The Results of ROC analysis showed that the texture parameter of means (T2WI-SSF2, T2WI-SSF4, T2WI-SSF6, DWI-SSF2, DWI-SSF6) and skewness (DWI-SSF6) could predict the progression of cervical squamous cell carcinoma after chemoradiotherapy in patients with cervical squamous cell carcinoma. The area under the curve (AUC) was 0.625-0.746. Among them, the mean of T2WI-SSF4 was the most effective (AUC: 0.746), followed by the mean of T2WI-SSF2 (AUC: 0.725) and the mean of T2WI-SSF6 (AUC: 0.703).Conclusions The texture parameters of baseline T2WI and DWI sequences were correlated with the curative effect of chemoradiotherapy in patients with cervical squamous cell carcinoma. The parameters of means and skewness can predict the progression of cervical squamous carcinoma after chemoradiotherapy, and the mean has a higher predictive power.
-
结肠癌是常见的消化道肿瘤,全球发病率以每年约2%的速度增长,而我国发病率的上升速度更为明显[1-2]。对于未出现远处转移的结肠癌患者,根治性手术是主要的治疗手段,其中已有淋巴结转移的Ⅲ期结肠癌患者更是一组与治疗密切相关的人群。近年来,腹腔镜结肠癌根治术发展迅速,不仅具有创伤小、恢复快等短期疗效优势,而且腹腔镜手术治疗结肠癌的长期生存率亦不劣于传统开腹手术[3-6]。但是,腹腔镜技术对于局部进展期结肠癌的肿瘤学疗效仅在既往研究中作为亚组分析,未见大宗病例报道。本研究旨在评价腹腔镜结肠癌根治性切除术治疗Ⅲ期结肠癌患者的临床疗效和长期预后。
资料和方法
临床资料
收集北京协和医院基本外科结直肠专业组2007年1月至2012年12月收治的Ⅲ期结肠癌手术患者资料,按手术方式分为腹腔镜组和开腹组。排除标准:(1)结肠癌因结肠穿孔或梗阻需要急诊手术;(2)多原发性癌。
所有患者术前通过结肠CT重建或者结肠镜明确肿瘤定位,根据胸部X线片、腹部超声或CT进行分期。术后病理均证实为TNM Ⅲ期结肠腺癌,均给予术后6个月的辅助化疗,方案为奥沙利铂+亚叶酸/5-氟尿嘧啶(FOLFOX-4)或奥沙利铂+卡培他滨(XELOX)。局部复发定义为影像学或组织学检查确定肿瘤位于吻合口及其附近肠管、Trocar孔、切口和盆壁。转移定义为肿瘤位于腹膜和肝脏、肺、脑等其他远隔组织器官。
手术方法
对于肿瘤部位相同的患者,腹腔镜组和开腹组肠管切除长度及淋巴结清扫范围一致。肿瘤位于盲肠及升结肠时行右半结肠切除术,根部结扎回结肠血管和右结肠血管或结肠中血管右支,清扫此区域内淋巴结。肿瘤位于横结肠中部时行横结肠切除术,根部结扎中结肠血管并清扫淋巴结。肿瘤位于降结肠时行左半结肠切除术,根部结扎肠系膜下血管,清扫相应区域淋巴结。肿瘤位于乙状结肠时行乙状结肠切除术,根部结扎乙状结肠血管并清扫相应区域淋巴结。腹腔镜手术行体外或体内(乙状结肠癌时)端-端肠吻合术。
随访情况
术后2年内每3个月随访一次,复查胸部X线、腹部B超、血癌胚抗原和CA19-9,每年复查1次结肠镜,并行胸腹盆增强CT代替X线和B超检查;术后2~5年每6个月随访一次,5年后每年随访一次。复查项目如有异常则进一步行全身骨扫描、MRI/CT、PET-CT等检查以明确复发或转移。本组患者末次随访时间为2014年6月。
统计学处理
采用SPSS 17.0软件进行数据分析。计数资料用卡方检验或者Fisher精确检验。计量资料采用均值±标准差表示,组间比较采用两独立样本t检验或秩和检验。用Kaplan-Meier法计算患者5年总体生存率、无病生存率,用Log-rank法进行组间比较。由手术结束累积至肿瘤死亡的时间为总生存时间;由手术结束累积至复发、转移或非肿瘤死亡的时间为无病生存时间。以双侧检验P<0.05为差异有统计学意义。
结果
患者临床病理特征
共纳入169例Ⅲ期结肠癌患者,其中腹腔镜组75例,开腹组94例。两组患者在性别、年龄、手术方式、肿瘤分化程度、肿瘤分期上差异均无统计学意义(P>0.05)。腹腔镜组手术时间显著长于开腹组[(171.3±43.2)min比(132.7±60.4)min,P<0.001],但术中出血量显著少于开腹组[(86.3±61.7)ml比(109.8±74.6)ml, P=0.030]。腹腔镜组检出淋巴结数目显著多于开腹组(23.3±12.2比19.3±9.6, P=0.022)(表 1)。
表 1 Ⅲ期结肠癌患者临床病理特征组别 性别(例) 年龄
(x±s,岁)术式(例) 手术时间
(x±s,min)出血量
(x±s,ml)组织分化程度(例) 淋巴结获取数目
(x±s)T分期(例) N分期(例) TNM分期(例) 男 女 右半结肠
切除术横结肠
切除术左半结肠
切除术乙状结肠
切除术高 中 低 T2 T3 T4 N1 N2 Ⅲa Ⅲb Ⅲc 腹腔镜组(n=75) 39 36 63.6±13.3 45 3 5 22 171.3±43.2 86.3±61.7 16 47 12 23.3±12.2 4 60 11 51 24 3 56 16 开腹组(n=94) 53 41 63.8±12.6 43 5 13 32 132.7±60.4 109.8±74.6 10 68 16 19.3±9.6 3 82 9 60 34 2 67 25 P值 0.680 0.929 0.341 <0.001 0.030 0.157 0.022 0.441 0.686 0.596 患者局部复发、转移情况及5年生存率
共纳入169例Ⅲ期结肠癌患者,其中腹腔镜组75例,开腹组94例。两组患者在性别、年龄、手术方式、肿瘤分化程度、肿瘤分期上差异均无统计学意义(P>0.05)。腹腔镜组手术时间显著长于开腹组[(171.3±43.2)min比(132.7±60.4)min,P<0.001],但术中出血量显著少于开腹组[(86.3±61.7)ml比(109.8±74.6)ml, P=0.030]。腹腔镜组检出淋巴结数目显著多于开腹组(23.3±12.2比19.3±9.6, P=0.022)(表 1)。
腹腔镜组和开腹组患者的中位随访时间分别为38个月(6~88个月)和32.1个月(8~88.7个月),差异无统计学意义(P=0.748)。腹腔镜组5例(6.7%)术后局部复发,开腹组8例(8.5%)术后局部复发,两组差异无统计学意义(P=0.876)。腹腔镜组和开腹组分别有21例(28%)和29例(30.9%)患者发生术后远处转移(P=0.815)(表 2)。
表 2 Ⅲ期结肠癌患者术后复发、转移情况(例)组别 局部复发 远处转移 吻合口 腹腔内 总计 肝 骨 肺 脑 卵巢 腹膜后 总计 腹腔镜组(n=75) 0 5 5 15 1 3 1 0 1 21 开腹组(n=94) 1 7 8 21 2 5 0 1 2 29 本组患者5年总生存率和5年无病生存率分别为63.9%和58.7%。其中腹腔镜组和开腹组患者5年累积总生存率分别为73.6%和58.8%(P=0.317)(图 1);5年累积无病生存率分别为61.6%和56.3% (P=0.544),差异均无统计学意义(图 2)。
讨论
早在九十年代初腹腔镜技术就开始应用于结肠癌手术中。初期由于腹腔镜结肠癌切除术后切口肿瘤复发以及Trocar孔种植发生率较高[7],使得人们对于腹腔镜结肠癌手术的肿瘤学安全性产生了疑虑。但是,随着腹腔镜技术的进步和器械的更新,腹腔镜技术在结肠癌治疗中的应用也越来越广泛,其长期的肿瘤学疗效也逐渐被接受[4-6]。
根治性结肠癌切除术至少应该做到:(1)完整系膜切除(complete mesocolic excision, CME)原则以及系膜根部淋巴结的清扫;(2)操作过程中不能造成肿瘤细胞的转移或播散。对于Ⅲ期结肠癌,手术的根治性对于提高预后尤为重要,大量研究也显示,Ⅲ期结肠癌患者的生存率随着检出淋巴结数目的增多而提高[8-10]。本研究中,腹腔镜组获取淋巴结总数为(23.3±12.2)个,而开腹组获取的淋巴结数目为(19.3±9.6)个,两组之间的差异具有统计学意义,检出淋巴结数目与以往文献报道相似[5, 11]。由此可见腹腔镜手术在区域淋巴结清扫上更优于开腹手术,这可能是导致5年总生存率优于开腹手术(73.6%比58.8%)的原因之一,虽然这种差异还没有达到统计学意义。
两组患者的局部复发/远处转移率相当(34.7%比39.4%), 其中开腹组有1例吻合口复发,其余均为腹腔内复发。本研究中两组均无手术切口或Trocar孔复发发生。曾有学者认为腹腔镜操作中气体流动、器械进出和更换等可能会造成脱离的肿瘤细胞种植于穿刺孔而降低腹腔镜结肠癌切除术的肿瘤学安全性[7]。可见随着腹腔镜技术的进步,避免结肠损伤以及常规使用切口保护装置可以有效减少腹腔镜手术中切口或者Trocar孔的复发[12]。
既往研究针对Ⅲ期结肠癌亚组的长期生存分析显示,腹腔镜手术组的5年总生存率(P=0.048)、无病生存率(P=0.048)和肿瘤相关生存率(P=0.02)均显著高于开腹手术组[13]。而在其他研究中,Ⅲ期结肠癌腹腔镜手术组的5年总生存率和无病生存率为72%~77.5%和67%~74.2%, 略高于开腹手术组,但差异无统计学意义[5, 11, 14]。在本研究中,腹腔镜组的5年总生存率和5年无病生存率均高于开腹手术组(73.6%比58.8%和61.6%比56.3%),但是二者差异均无统计学意义,与文献报道结果相当。这一结果可能得益于腹腔镜手术能够获取更多的淋巴结。
综上,本研究显示,在Ⅲ期结肠癌根治性手术中,腹腔镜手术可以获得不劣于开腹手术的长期预后结果,腹腔镜技术是安全有效的。
作者贡献:苏佰燕负责研究设计、数据分析、结果解读及论文撰写;戚亚菲、管慧参与研究设计、数据采集;何泳蓝、薛华丹、金征宇参与数据分析、研究实施、结果解读并指导论文修改。利益冲突:无 -
表 1 疾病进展组与疾病稳定组T2WI序列图像纹理参数比较
纹理参数 疾病进展组(n=46) 疾病稳定组(n=75) P值 SSF2 均值 -10.49±39.80 23.18±44.64 0.000 标准差 196.55±146.14 176.52±79.19 0.330 熵 6.21±0.38 6.09±0.38 0.083 正性像素均值 136.49±111.75 141.71±67.66 0.749 偏度 -0.20±1.14 0.36±0.98 0.006 峰度 3.56±5.68 3.47±4.63 0.921 SSF4 均值 -77.20±114.50 15.93±87.27 0.000 标准差 274.70±209.93 228.59±115.02 0.121 熵 6.42±0.43 6.23±0.44 0.019 正性像素均值 158.35±131.36 179.13±134.13 0.406 偏度 -0.66±0.77 -0.21±0.91 0.007 峰度 1.94±1.93 1.95±2.29 0.990 SSF6 均值 -173.73±220.73 -38.99±138.36 0.000 标准差 357.91±295.41 280.95±144.38 0.058 熵 6.61±0.47 6.37±0.50 0.008 正性像素均值 193.85±189.00 190.23±152.54 0.908 偏度 -0.58±0.65 -0.49±0.80 0.511 峰度 0.75±1.09 1.09±2.04 0.233 T2WI:T2加权成像;SSF:同图 1 表 2 疾病进展组与疾病稳定组DWI序列图像纹理参数比较
纹理参数 疾病进展组(n=46) 疾病稳定组(n=75) P值 SSF2 均值 90.23±70.23 137.98±92.76 0.003 标准差 177.82±99.68 184.03±73.59 0.715 熵 5.42±0.67 5.35±0.52 0.544 正性像素均值 178.08±100.63 208.95±98.85 0.100 偏度 0.26±0.52 0.22±0.41 0.601 峰度 0.96±2.02 0.32±0.79 0.047 SSF4 均值 259.14±188.83 356.65±210.77 0.011 标准差 277.17±163.90 265.50±110.31 0.671 熵 5.58±0.67 5.46±0.56 0.265 正性像素均值 344.81±207.11 412.02±205.43 0.084 偏度 0.23±0.62 0.03±0.48 0.047 峰度 0.50±1.51 -0.01±0.70 0.036 SSF6 均值 428.56±288.62 544.30±273.42 0.029 标准差 302.58±179.16 290.13±115.29 0.675 熵 5.61±0.69 5.48±0.57 0.262 正性像素均值 487.95±293.02 576.29±265.70 0.090 偏度 0.12±0.49 -0.09±0.34 0.012 峰度 -0.08±0.88 -0.32±0.57 0.104 DWI、SSF:同图 1 表 3 图像纹理参数与宫颈鳞癌放化疗后疾病进展相关性的Cox回归分析阳性结果
纹理参数 HR(95% CI) P值 T2WI-SSF2-均值 0.984(0.968~1.000) 0.045 T2WI-SSF4-均值 0.996(0.991~1.000) 0.044 T2WI-SSF6-均值 0.996(0.993~0.999) 0.019 DWI-SSF2-均值 0.959(0.935~0.983) 0.001 DWI-SSF2-熵 0.327(0.163~0.654) 0.002 DWI-SSF4-熵 0.462(0.257~0.831) 0.010 DWI-SSF4-偏度 1.897(1.019~3.531) 0.043 DWI-SSF6-均值 0.988(0.978~0.999) 0.033 DWI-SSF6-熵 0.488(0.275~0.867) 0.014 DWI-SSF6-偏度 3.882(1.755~8.587) 0.001 T2WI:同表 1;DWI、SSF:同图 1 -
[1] Torre LA, Siegel RL, Ward EM, et al. Global cancer incidence and mortality rates and trends--An update[J]. Cancer Epidemiol Biomarkers Prev, 2016, 25: 16-27. DOI: 10.1158/1055-9965.EPI-15-0578
[2] Jr WS, Bacon MA, Bajaj A, et al. Cervical cancer: A global health crisis[J]. Cancer, 2017, 123: 2404-2412. DOI: 10.1002/cncr.30667
[3] Jonska-Gmyrek J, Gmyrek L, Zolciak-Siwinska A, et al. Adenocarcinoma histology is a poor prognostic factor in locally advanced cervical cancer[J]. Curr Med Res Opin, 2019, 35: 595-601. DOI: 10.1080/03007995.2018.1502166
[4] Davnall F, Yip CS, Ljungqvist G, et al. Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice?[J]. Insights Imaging, 2012, 3: 573-589. DOI: 10.1007/s13244-012-0196-6
[5] Ng F, Ganeshan B, Kozarski R, et al. Assessment of primary colorectal cancer heterogeneity by using whole-tumor texture analysis: contrast-enhanced CT texture as a biomarker of 5-year survival[J]. Radiology, 2013, 266: 177-184. DOI: 10.1148/radiol.12120254
[6] Kim JH, Ko ES, Lim Y, et al. Breast cancer hetero-geneity: MR imaging texture analysis and survival outcomes[J]. Radiology, 2017, 282: 665-675. DOI: 10.1148/radiol.2016160261
[7] Zhang S, Chiang GC, Magge RS, et al. Texture analysis on conventional MRI images accurately predicts early malignant transformation of low-grade gliomas[J]. Eur Radiol, 2019, 29: 2751-2759. DOI: 10.1007/s00330-018-5921-1
[8] Ditmer A, Zhang B, Shujaat T, et al. Diagnostic accuracy of MRI texture analysis for grading gliomas[J]. J Neurooncol, 2018, 140: 583-589. DOI: 10.1007/s11060-018-2984-4
[9] 张铮铮, 刘筱, 徐浩, 等. MRI图像纹理特征在评估宫颈癌新辅助化疗中的预测作用[J]. 徐州医科大学学报, 2018, 38: 592-595. DOI: 10.3969/j.issn.1000-2065.2018.09.009 Zhang ZZ, Liu X, Xu H, et al. Application of MRI texture analysis in evaluating the neoadjuvant chemotherapy response in uterine cervix carcinoma[J]. Xuzhou Yike Daxue Xuebao, 2018, 38: 592-595. DOI: 10.3969/j.issn.1000-2065.2018.09.009
[10] 郑明雪, 董江宁, 李翠平, 等. 表观扩散系数联合纹理特征评估宫颈鳞癌分化程度的价值[J]. 实用放射学杂志, 2020, 36: 592-595, 614. DOI: 10.3969/j.issn.1002-1671.2020.04.021 Zheng MX, Dong JN, Li CP, et al. The value of ADC values and texture analysis in evaluating the differentiation degree of cervical squamous cell carcinoma[J]. Shiyong Fangshexue Zazhi, 2020, 36: 592-595, 614. DOI: 10.3969/j.issn.1002-1671.2020.04.021
[11] 陈文林, 胥明婧, 李绍东. 磁共振扩散加权成像纹理分析在对宫颈癌术后早期复发的预测价值[J]. 广西医学, 2018, 40: 1440-1443. https://www.cnki.com.cn/Article/CJFDTOTAL-GYYX201813016.htm Chen WL, Xu MJ, Li SD. Predictive value of texture analysis based on MRI diffusion-weighted imaging for early recurrence of cervical cancer after surgery[J]. Guangxi Yixue, 2018, 40: 1440-1443. https://www.cnki.com.cn/Article/CJFDTOTAL-GYYX201813016.htm
[12] 谢元亮, 杜丹, 谢伟, 等. DCE-MRI纹理分析鉴别宫颈鳞癌与腺癌及预测分级的价值[J]. 放射学实践, 2019, 34: 835-840. https://www.cnki.com.cn/Article/CJFDTOTAL-FSXS201908002.htm Xie YL, Du D, Xie W, et al. The value of texture analysis based on dynamic contrast-enhanced MRI for differentiating cervical adeno-carcinoma from squamous cell carcinoma and its prediction of stages[J]. Fangshexue Shijian, 2019, 34: 835-840. https://www.cnki.com.cn/Article/CJFDTOTAL-FSXS201908002.htm
[13] 杜文壮, 蒲如剑, 梁洁, 等. DCE-MRI纹理分析鉴别AFP阴性肝细胞肝癌与肝局灶性结节增生的价值[J]. 磁共振成像, 2020, 11: 765-770. DOI: 10.12015/issn.1674-8034.2020.09.009 Du WZ, Pu RJ, Liang J, et al. The value of texture analysis of dynamic contrast-enhanced MRI in differentiating AFP negative hepatocellular carcinoma from focal nodular hyperplasia[J]. Cigongzhen Chengxiang, 2020, 11: 765-770. DOI: 10.12015/issn.1674-8034.2020.09.009
[14] 李梦双, 刘耀赛, 董丽娜, 等. MRI纹理分析在Ⅱ级和Ⅲ级脑胶质瘤鉴别诊断中的应用价值研究[J]. 浙江医学, 2020, 42: 580-582. DOI: 10.12056/j.issn.1006-2785.2020.42.6.2019-3525 Li MS, Liu YS, Dong LN, et al. Value of MRI texture analysis in differential diagnosis of grade Ⅱ and grade Ⅲ gliomas[J]. Zhejiang Yixue, 2020, 42: 580-582. DOI: 10.12056/j.issn.1006-2785.2020.42.6.2019-3525
[15] 郑茜, 鲁毅, 孙学进, 等. 常规磁共振成像纹理分析对良、恶性脑膜瘤鉴别诊断价值[J]. 实用放射学杂志, 2020, 36: 1192-1195. DOI: 10.3969/j.issn.1002-1671.2020.08.004 Zheng Q, Lu Y, Sun XJ, et al. The value of conventional MRI texture analysis in differential diagnosis of benign and malignant meningiomas[J]. Shiyong Fangshexue Zazhi, 2020, 36: 1192-1195. DOI: 10.3969/j.issn.1002-1671.2020.08.004
[16] 翁炜, 吕秀玲, 张倩倩, 等. 基于磁共振影像组学技术对肝癌经肝动脉化疗栓塞术后短期疗效的预后价值分析[J]. 中华医学杂志, 2020, 100: 828-832. DOI: 10.3760/cma.j.cn112137-20190705-01502 Weng W, Lyu XL, ZHANG QQ, et al. Prediction of short-term prognosis of hepatocellular carcinoma after TACE surgery based on MRI texture analysis technology[J]. Zhonghua Yixue Zazhi, 2020, 100: 828-832. DOI: 10.3760/cma.j.cn112137-20190705-01502
[17] 薛珂, 丁莹莹, 李振辉, 等. 利用磁共振成像动态增强纹理特征预测不同分子亚型乳腺癌[J]. 实用放射学杂志, 2020, 36: 1235-1239. DOI: 10.3969/j.issn.1002-1671.2020.08.015 Xue K, Ding YY, Li ZH, et al. Dynamic contrast-enhanced MRI texture analysis for distinguishing different molecular subtypes of breast cancer[J]. Shiyong Fangshexue Zazhi, 2020, 36: 1235-1239. DOI: 10.3969/j.issn.1002-1671.2020.08.015
[18] Ganeshan B, Miles KA, Young RC, et al. Hepatic enhancement in colorectal cancer: texture analysis correlates with hepatic hemodynamics and patient survival[J]. Acad Radiol, 2007, 14: 1520-1530. DOI: 10.1016/j.acra.2007.06.028
[19] Chen J, Wang HY, Ye HY. Research progress of texture analysis in tumor imaging[J]. Chin J Radiol, 2017, 51: 979-982.
[20] Teruel JR, Heldahl MG, Goa PE, et al. Dynamic contrast-enhanced MRI texture analysis for pretreatment prediction of clinical and pathological response to neoadjuvant chemo-therapy in patients with locally advanced breast cancer[J]. NMR Biomed, 2014, 27: 887-896. DOI: 10.1002/nbm.3132
[21] Pyka T, Bundschuh RA, Andratschke N, et al. Textural features in pre-treatment[F18 ]-FDG-PET/CT are correlated with risk of local recurrence and disease-specific survival in early stage NSCLC patients receiving primary stereotactic radiation therapy[J]. Radiat Oncol, 2015, 10: 100. DOI: 10.1186/s13014-015-0407-7
[22] Ganeshan B, Miles KA. Quantifying tumour heterogeneity with CT[J]. Cancer Imaging, 2013, 13: 140-149. DOI: 10.1102/1470-7330.2013.0015
[23] 王俊, 孙阳, 张燕燕, 等. CT纹理分析鉴别诊断胰腺导管腺癌、胰腺神经内分泌肿瘤及实性假乳头状肿瘤[J]. 中国医学影像技术, 2020, 36: 554-558. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXX202004019.htm Wang J, Sun Y, Zhang YY, et al. CT texture analysis in differential diagnosis of pancreatic ductal adenocarcinoma, pancreatic neuroendocrine tumor and solid pseudopapillary tumor[J]. Zhongguo Yixue Yingxiang Jishu, 2020, 36: 554-558. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXX202004019.htm
[24] Kyriazi S, Collins DJ, Messiou C, et al. Metastatic ovarian and primary peritoneal cancer: assessing chemotherapy response with diffusion-weighted MR imaging-value of histogram analysis of apparent diffusion coefficients[J]. Radiology, 2011, 261: 182-192. DOI: 10.1148/radiol.11110577
[25] Bezy-Wendling J, Kretowski M, Rolland Y, et al. Toward a better understanding of texture in vascular CT scan simulated images[J]. IEEE Trans Biomed Eng, 2001, 48: 120-124. DOI: 10.1109/10.900272
-
期刊类型引用(1)
1. 孙岩,李洁,顾仁莲. Ⅲ期结肠癌老年患者采用腹腔镜全结肠系膜切除术的临床研究. 中国处方药. 2018(03): 114-115 . 百度学术
其他类型引用(0)