-
摘要: 随着人口老龄化加剧,老年患者手术量呈指数上升。一些危险因素如共病、用药前状态、营养不良、虚弱和免疫系统功能受损等与老年患者脓毒症的高易感性相关,这些因素不仅增加了脓毒症的发生风险,还可导致更严重的感染,并可能与更高的死亡率相关。与非老年患者相比,老年脓毒症患者的预后更差,但其治疗并无显著差异。此外,老年脓毒症幸存者的生活质量也较差。因此,为优化老年脓毒症患者围术期管理,相关学科临床专家就该问题进行讨论并制订了此共识。Abstract: As the increasing of the aging population, the number of elderly surgical patients has increased exponentially.In elderly patients, a number of risk factors, such as comorbidities, premedication status, malnutrition, weakness, and impaired function of the immune system (or immune senescence), which are associated with a higher susceptibility to sepsis.These factors not only increase the risk of sepsis, but also lead to more severe manifestations of infection and may be associated with higher mortality.Elderly patients with sepsis had a poor prognosis compared to non-elderly patients, but there was no significant difference in the treatment.In addition, the survivors of elderly septic patients also had poorer quality of life.Therefore, in order to optimize the perioperative management of elderly patients, clinical experts from relevant disciplines discussed this issue and formulated this consensus.
-
Keywords:
- sepsis /
- elderly patients /
- perioperative management /
- expert consensus
-
1. 抗Ⅹa活性检测的原理及其特点
抗Ⅹa活性检测是一种功能试验,主要用于监测抗Ⅹa类药物的抗凝效果,如普通肝素、低分子量肝素、直接Ⅹa抑制剂(如利伐沙班)等。其原理是将待测标本与试剂中的过量Ⅹa因子共同孵育,待测标本中的抗Ⅹa类药物将灭活试剂中的Ⅹa,然后以相对应的Ⅹa类药物为定标品,再通过发色底物或凝固时间计算剩余的Ⅹa因子,进行抗Ⅹa类药物定量,从而确定抗凝药物的抗凝效果(图 1)[1]。检测肝素的试剂分为加抗凝血酶(antithrombin,AT)和不加AT两种,因肝素是一种间接抗凝剂,通过增加体内AT活性发挥抗凝作用,故临床监测肝素一般推荐不加AT的试剂,以肝素与体内AT的结合反映标本中肝素的抗凝效果[2]。
图 1 抗Ⅹa活性检测原理[1]抗Ⅹa活性检测属于药物检测,故需考虑药物在体内的药代动力学特点。普通肝素一般用药3~6 h后体内达到药物峰浓度,12~16 h为药物谷浓度。美国胸科医师协会建议,对于深静脉血栓(deep vein thrombosis,DVT)的治疗,普通肝素用药4 h后应行抗Ⅹa活性检测,抗Ⅹa水平正常范围为0.3~0.7 kU/L;皮下注射低分子量肝素4 h后同样应行抗Ⅹa活性检测(若每天给药2次,依诺肝素或那曲肝素抗Ⅹa水平正常范围为0.6~1.0 kU/L;若每天给药1次,依诺肝素抗Ⅹa水平应>1.0 kU/L,那曲肝素应为1.3 kU/L,达肝素应为1.05 kU/L,亭扎肝素应为0.85 kU/L)[3]。临床中可根据抗Ⅹa水平,酌情进行药物剂量的调整。
2. 抗Ⅹa可监测的抗凝药物
抗Ⅹa可监测普通肝素、低分子量肝素和利伐沙班。普通肝素是一种带负电的黏多糖,通过高亲和力五糖序列与AT结合,从而改变AT的分子构象并将其转化为多种凝血蛋白的快速抑制剂,尤其是凝血因子Ⅱa和Ⅹa。普通肝素对Ⅱa和Ⅹa的抑制比例为1∶1,低分子量肝素为1∶2~1∶4 [4]。普通肝素的药效并不可预测,主要由于其进入血液后,带负电荷的普通肝素分子与带正电荷的非特异性血浆蛋白相互结合,而在危重症、急性感染、炎症性疾病或接受大手术的患者中,普通肝素会结合急性期升高的蛋白质尤其是凝血因子Ⅷ,从而导致游离的肝素分子较少[5]。相比之下,低分子量肝素具有更长的半衰期和更少的血浆蛋白结合以及可预测的注射后药物水平[6]。利伐沙班则通过直接抑制凝血因子Ⅹa发挥抗凝作用,是一种临床应用越来越广泛的新型抗凝药物。
既往30年中,随着抗Ⅹa类药物(包括低分子量肝素、黄达肝素钠和利伐沙班)的批准上市,血栓的预防和治疗用药选择不断拓展,但普通肝素仍然是使用最广泛的抗凝剂,广泛应用于血液透析、经皮腔内血管成形术、体外循环技术以及住院危重患者的血栓预防。
2.1 抗Ⅹa监测普通肝素
活化部分凝血活酶时间(activated partial thromboplastin time,APTT) 与血浆肝素浓度具有剂量线性关系[7],但最初APTT主要用于血友病筛查,而非肝素监测,其在凝血因子缺乏或狼疮抗凝物存在的情况下延长。此外,凝血酶对肝素- AT较对凝血因子Ⅹa敏感,且对低分子量肝素不敏感,故普通肝素可延长APTT,而低分子量肝素延长APTT的作用有限[8]。
抗Ⅹa活性检测是一种特异性的肝素监测方法。研究发现,当抗Ⅹa水平为0.3 kU/L时,APTT结果为47~108 s[9],进入APTT治疗窗的患者,抗Ⅹa与鱼精蛋白滴定分析试验结果往往低于治疗窗。由于APTT与血浆肝素浓度的剂量依赖关系较差,故对于不同的实验室应采用抗Ⅹa活性检测对APTT进行校正,使APTT的监测范围匹配抗Ⅹa水平(0.3~0.7 kU/L)[10]。值得说明的是,由于不同仪器、不同试剂对不同患者肝素的检测灵敏度差异较大,血浆中高蛋白水平、低AT水平、狼疮抗凝物消耗性凝血障碍、肝衰竭等均可影响APTT,导致APTT与抗Ⅹa的相关性仅为25%~66%[11]。
虽然抗Ⅹa并未完全标准化,但抗Ⅹa活性检测对肝素的监测结果比APTT更为可靠。在不同实验室采用抗Ⅹa进行肝素监测基本可得到相同的结果,而APTT则不然。
对于普通肝素而言,抗Ⅹa活性检测无须进行本地仪器或试剂校准,在全球范围内肝素治疗DVT的抗Ⅹa水平正常范围为0.3~0.7 kU/L[12]。尽管大规模的随机对照试验并未将抗Ⅹa活性检测与临床结果相关联,但目前认为对于急性心肌梗死、肝素抵抗、抗磷脂综合征以及临床重症患者,其仍是最佳的肝素监测方法。
与APTT监测相比,抗Ⅹa监测的肝素抵抗患者接受低剂量普通肝素治疗时静脉血栓栓塞症(venous thromboembolism,VTE)的复发率显著降低[13]。抗磷脂综合征患者具有较长的APTT基线值,会导致APTT对于肝素抗凝效果的错误评估,而抗Ⅹa活性检测可准确反映肝素的抗凝效果。Arachchillage等[14]发现,在<1岁的儿童中,APTT和抗Ⅹa用于监测肝素的相符率仅为32.4%,低于1~15岁(66%)和成人(52%);且2/3的患者虽然抗Ⅹa水平在治疗范围内,但其APTT高于治疗范围。虽然目前缺少更多的临床证据,但抗Ⅹa活性检测可能是<1岁儿童更为特异的肝素监测方法。当然,对于危重症成人患者而言,抗Ⅹa监测普通肝素也可能优于APTT,但仍需大规模临床随机对照试验加以验证。
2.2 抗Ⅹa监测低分子量肝素
大多数患者接受低分子量肝素治疗无须实验室监测。Alhenc-Gelas等[15]研究发现,根据抗Ⅹa活性检测结果指导DVT药物剂量调整缺乏临床益处。但儿童、高龄(年龄>85岁)、极端体质量(<40 kg或>144 kg)、慢性肾病(肌酐清除率15~30 mL/min)、妊娠(特别是有机械心脏瓣膜者)患者建议治疗期间进行抗Ⅹa活性监测,且应在血浆水平达到峰值时测量(即皮下注射后3~4 h,妊娠期间用药4~6 h)。以依诺肝素为例,若每天给药2次,建议抗Ⅹa水平正常范围为0.5~1.2 kU/L;若每天给药1次,正常范围为1.0~2.0 kU/L。值得注意的是,与普通肝素抗Ⅹa监测不同,上述范围并非基于前瞻性数据,若结果超出建议的目标范围,目前的指南亦未给出安全调整剂量[16]。抗Ⅹa监测对于应用低分子量肝素治疗的妊娠高血压患者尤为重要,抗Ⅹa峰值水平低于正常甚至处于较低水平时,发生心脏瓣膜血栓和心脏栓塞事件的概率较高,且随着抗Ⅹa水平的升高,患者出血风险增加。抗Ⅹa测定低分子量肝素水平与肌酐清除率高度相关。多次依诺肝素治疗会导致其在肾功能不全患者体内蓄积,出血风险增加[17]。
2.3 抗Ⅹa监测利伐沙班
利伐沙班是一种直接抑制凝血因子Ⅹa的口服抗凝剂,已被美国食品药品监督管理局批准用于预防房颤、手术患者的血栓形成以及VTE治疗。对利伐沙班的监测应按需进行,特定情况下(例如肾功能不全、用药依从性评估、围术期、怀疑过量、高龄和极端体质量)监测是必要的。但目前尚未确定利伐沙班的治疗参考范围,仅依据不同剂量在临床试验中观察峰值和谷值水平[16-17] (表 1)。
表 1 利伐沙班临床适应证及抗Ⅹa监测范围[18]适应证 剂量 谷值(范围),μg/L 峰值(范围),μg/L 全髋关节置换术后VTE预防 10 mg,1次/d 8(1~38) 125(91~196) DVT治疗 20 mg,1次/d 26(6~87) 270(189~419) 非瓣膜性房颤(肌酐清除率≥50 mL/min) 20 mg,1次/d 44(12~137) 249(184~343) 非瓣膜性房颤(肌酐清除率30~49 mL/min) 15 mg,1次/d 57(18~136) 229(178~313) 急性冠脉综合征的二级预防 2.5 mg,2次/d 17(6~37) 46(28~70) VTE:静脉血栓栓塞症;DVT:深静脉血栓 3. 抗凝药物的实验室监测指征
随着抗凝治疗临床研究的逐渐深入以及药物靶点的单一化,抗凝药物的安全性有了明显改善,但由于临床情况复杂,患者个体差异大,在临床实践中,尚无哪种抗凝药物完全无须监测,区别在于普通肝素需常规监测,而低分子量肝素、利伐沙班仅在特殊情况下需进行监测(表 2)。
表 2 抗凝药物监测指征及监测项目抗凝药物 监测指征 监测项目 普通肝素 常规监测 APTT、ACT、抗Ⅹa 低分子量肝素 妊娠期、严重肾功能不全、严重出血风险、肥胖或体质量过低等 抗Ⅹa 利伐沙班 有影响药物代谢的因素,如肾肝功能不全、肥胖或体质量过低、胃肠道吸收不良等 抗Ⅹa、PT APTT:活化部分凝血活酶时间;ACT:激活凝血时间;PT: 凝血酶原时间 4. 小结与展望
抗Ⅹa活性检测目前作为检测抗Ⅹa类药物的金标准,已经逐渐被国内临床医生所接受,但由于缺乏大规模随机对照研究,检测结果很难与临床表现相关联;此外,我国针对普通肝素、低分子量肝素的抗Ⅹa活性检测至今尚无正常值参考范围。低分子量肝素、新型抗凝药物在特定情况下均需密切监测,防止用药不足和用药过量的个体化抗凝是临床迫切需要解决的重要问题。相信随着我国临床研究的不断深入,此类问题将在不久后迎刃而解。
作者贡献:方向明教授牵头组织了专家共识撰写小组,建立了编辑委员会(编委会),并任命吴水晶、谢郭豪负责编委会对共识的撰写工作;吴水晶、谢郭豪共同起草了专家共识初稿,并在方向明教授的组织下联合编委会其他成员对共识进行修订、凝练推荐意见;于吉人、王锷、王迪芬、仓静、冯艺、张西京、杨毅、杨云梅、吴水晶、汪炜健、杜斌、尚游、林茹、程宝莉、谢郭豪、方向明共同参与了共识的三轮修订工作;在方向明教授的指导下,吴水晶、谢郭豪对专家共识终稿全文进行审校,所有作者均通过了共识终稿,并形成共识定稿。利益冲突:无 -
表 1 SOFA评分标准[1]
器官系统 评分 0 1 2 3 4 呼吸系统 PaO2/FiO2(mm Hg) ≥400 <400 <300 <200 <100 呼吸支持 - - - 需要 需要 凝血系统 血小板(×109/L) ≥150 <150 <100 <50 <20 肝脏 胆红素(μmol/L) <20 20~32 33~101 102~204 >204 循环系统 平均动脉压(mm Hg) ≥70 <70 - - - 儿茶酚胺类药物a [μg/(kg·min)] - - 多巴胺<5或任何剂量的多巴酚丁胺 多巴胺5.1~15或肾上腺素≤0.1或去甲肾上腺素≤0.1 多巴胺>15或肾上腺素>0.1或去甲肾上腺素>0.1 中枢神经系统 GCS评分 15 13~14 10~12 6~9 <6 肾脏b 肌酐(μmol/L) <110 110~170 171~299 300~440 >440 24 h尿量(mL) - - - <500 <200 SOFA:序贯性器官衰竭评分;PaO2/FiO2:动脉血氧分压与吸入气氧浓度的比值,即氧合指数;GCS:格拉斯哥昏迷指数;a儿茶酚胺类药物的使用时间至少为1 h; b肌酐或24 h尿量一项达到标准即评为3分或4分;-:不需要或未给出标准 -
[1] Shankar-Hari M, Phillips GS, Levy ML, et al. Developing a new definition and assessing new clinical criteria for septic shock: for the third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA, 2016, 315: 775-787. DOI: 10.1001/jama.2016.0289
[2] Fleischmann-Struzek C, Mellhammar L, Rose N, et al. Incidence and mortality of hospital- and ICU-treated sepsis: results from an updated and expanded systematic review and meta-analysis[J]. Intensive Care Med, 2020, 46: 1552-1562. DOI: 10.1007/s00134-020-06151-x
[3] Shetty AK, Kodali M, Upadhya R, et al. Emerging anti-aging strategies-scientific basis and efficacy[J]. Aging Dis, 2018, 9: 1165-1184. DOI: 10.14336/AD.2018.1026
[4] Martin GS, Mannino DM, Eaton S, et al. The epidemio-logy of sepsis in the United States from 1979 through 2000[J]. N Engl J Med, 2003, 348: 1546-1554. DOI: 10.1056/NEJMoa022139
[5] American Society of Anesthesiologists Task Force on Perioperative Management of patients with obstructive sleep apnea. Practice guidelines for the perioperative management of patients with obstructive sleep apnea: an updated report by the American Society of Anesthesiologists Task Force on perioperative management of patients with obstructive sleep apnea[J]. Anesthesiology, 2014, 120: 268-286. DOI: 10.1097/ALN.0000000000000053
[6] Levy MM, Evans LE, Rhodes A. The Surviving Sepsis Campaign bundle: 2018 update[J]. Crit Care Med, 2018, 46: 997-1000. DOI: 10.1097/CCM.0000000000003119
[7] Yuki K, Murakami N. Sepsis pathophysiology and anes-thetic consideration[J]. Cardiovasc Hematol Disord Drug Targets, 2015, 15: 57-69. DOI: 10.2174/1871529X15666150108114810
[8] Li Y, Chen D, Wang H, et al. Intravenous versus volatile anesthetic effects on postoperative cognition in elderly patients undergoing laparoscopic abdominal surgery[J]. Anesthesiology, 2021, 134: 381-394. DOI: 10.1097/ALN.0000000000003680
[9] Herling SF, Dreijer B, Wrist Lam G, et al. Total intravenous anaesthesia versus inhalational anaesthesia for adults undergoing transabdominal robotic assisted laparoscopic surgery[J]. Cochrane Database Syst Rev, 2017(4): CD011387. http://europepmc.org/abstract/MED/28374886
[10] 李佳静, 季方兵, 郑曼, 等. 全凭静脉麻醉与全程吸入麻醉对老年腹部手术患者心脏功能的影响[J]. 临床麻醉学杂志, 2019, 35: 137-140. DOI: 10.12089/jca.2019.02.008 Li JJ, Ji FB, Zheng M, et al. Effects of all intravenous anesthesia versus total inhalation anesthesia on the cardiac function in elderly patients during intestinal surgery[J]. Linchuang Mazuixue Zazhi, 2019, 35: 137-140. DOI: 10.12089/jca.2019.02.008
[11] Kim S, Brooks AK, Groban L. Preoperative assessment of the older surgical patient: honing in on geriatric syndromes[J]. Clin Interv Aging, 2015, 10: 13-27. http://europepmc.org/abstract/med/25565783
[12] 中华医学会麻醉学分会老年人麻醉与围术期管理学组, 国家老年疾病临床医学研究中心, 国家老年麻醉联盟. 中国老年患者围术期麻醉管理指导意见(2020版)(二)[J]. 中华医学杂志, 2020, 100: 2565-2578. DOI: 10.3760/cma.j.cn112137-20200503-01407 [13] 吴本俨. 老年人消化系统的衰老改变[J]. 中华老年医学杂志, 2007, 26: 76-78. DOI: 10.3760/j:issn:0254-9026.2007.01.025 [14] Li H, Wang W, Lu YP, et al. Evaluation of endotracheal intubation with a flexible fiberoptic bronchoscope in lateral patient positioning: a prospective randomized controlled trial[J]. Chin Med J (Engl), 2016, 129: 2045-2049. DOI: 10.4103/0366-6999.189069
[15] Eissa D, Carton EG, Buggy DJ. Anaesthetic management of patients with severe sepsis[J]. Br J Anaesth, 2010, 105: 734-743. DOI: 10.1093/bja/aeq305
[16] Naeije G, Pepersack T. Delirium in elderly people[J]. Lancet, 2014, 383: 2044-2045. DOI: 10.1016/S0140-6736(14)60993-4
[17] Heinrich S, Schmidt J, Ackermann A, et al. Comparison of clinical outcome variables in patients with and without etomidate-facilitated anesthesia induction ahead of major cardiac surgery: a retrospective analysis[J]. Crit Care, 2014, 18: R150. DOI: 10.1186/cc13988
[18] McPhee LC, Badawi O, Fraser GL, et al. Single-dose etomidate is not associated with increased mortality in ICU patients with sepsis: analysis of a large electronic ICU database[J]. Crit Care Med, 2013, 41: 774-783. DOI: 10.1097/CCM.0b013e318274190d
[19] Gu WJ, Wang F, Tang L, et al. Single-dose etomidate does not increase mortality in patients with sepsis: a systematic review and meta-analysis of randomized controlled trials and observational studies[J]. Chest, 2015, 147: 335-346. DOI: 10.1378/chest.14-1012
[20] Zausig YA, Busse H, Lunz D, et al. Cardiac effects of induction agents in the septic rat heart[J]. Crit Care, 2009, 13: R144. DOI: 10.1186/cc8038
[21] Kochiyama T, Li X, Nakayama H, et al. Effect of propofol on the production of inflammatory cytokines by human polarized macrophages[J]. Mediators Inflamm, 2019, 2019: 1919538. http://www.ncbi.nlm.nih.gov/pubmed/31007601
[22] Marra EM, Mazer-Amirshahi M, Mullins P, et al. Opioid administration and prescribing in older adults in U.S. emergency departments (2005-2015)[J]. West J Emerg Med, 2018, 19: 678-688. DOI: 10.5811/westjem.2018.5.37853
[23] Pergolizzi J, Böger RH, Budd K, et al. Opioids and the management of chronic severe pain in the elderly: consensus statement of an International Expert Panel with focus on the six clinically most often used World Health Organization Step Ⅲ opioids (buprenorphine, fentanyl, hydromorphone, methadone, morphine, oxycodone)[J]. Pain Pract, 2008, 8: 287-313. DOI: 10.1111/j.1533-2500.2008.00204.x
[24] Landesberg G, Gilon D, Meroz Y, et al. Diastolic dysfunction and mortality in severe sepsis and septic shock[J]. Eur Heart J, 2012, 33: 895-903. DOI: 10.1093/eurheartj/ehr351
[25] Mouncey PR, Osborn TM, Power GS, et al. Protocolised management in sepsis (ProMISe): a multicentre rando-mised controlled trial of the clinical effectiveness and cost-ef-fectiveness of early, goal-directed, protocolised resuscita-tion for emerging septic shock[J]. Health Technol Assess, 2015, 19: i-xxv, 1-150. http://www.ncbi.nlm.nih.gov/pubmed/26597979
[26] Peake SL, Delaney A, Bailey M, et al. Goal-directed resuscitation for patients with early septic shock[J]. N Engl J Med, 2014, 371: 1496-1506. DOI: 10.1056/NEJMoa1404380
[27] Rowan KM, Angus DC, Bailey M, et al. Early, Goal-directed therapy for septic shock - A patient-level meta-analysis[J]. N Engl J Med, 2017, 376: 2223-2234. DOI: 10.1056/NEJMoa1701380
[28] Perner A, Haase N, Winkel P, et al. Long-term outcomes in patients with severe sepsis randomised to resuscitation with hydroxyethyl starch 130/0.42 or Ringer's acetate[J]. Intensive Care Med, 2014, 40: 927-934. DOI: 10.1007/s00134-014-3311-y
[29] Park CHL, de Almeida JP, de Oliveira GQ, et al. Lactated Ringer's Versus 4% Albumin on Lactated Ringer's in Early Sepsis Therapy in Cancer Patients: A Pilot Single-Center Randomized Trial[J]. Crit Care Med, 2019, 47: e798-e805. DOI: 10.1097/CCM.0000000000003900
[30] De Backer D, Aldecoa C, Njimi H, et al. Dopamine versus norepinephrine in the treatment of septic shock: a meta-analysis[J]. Crit Care Med, 2012, 40: 725-730. DOI: 10.1097/CCM.0b013e31823778ee
[31] Jin Y, Ying J, Zhang K, et al. Endotracheal intubation under video laryngoscopic guidance during upper gastrointestinal endoscopic surgery in the left lateral position: A randomized controlled trial[J]. Medicine (Baltimore), 2017, 96: e9461. DOI: 10.1097/MD.0000000000009461
[32] Fan E, Brodie D, Slutsky AS. Acute respiratory distress syndrome: advances in diagnosis and treatment[J]. JAMA, 2018, 319: 698-710. DOI: 10.1001/jama.2017.21907
[33] Futier E, Marret E, Jaber S. Perioperative positive pressure ventilation: an integrated approach to improve pulmonary care[J]. Anesthesiology, 2014, 121: 400-408. DOI: 10.1097/ALN.0000000000000335
[34] Lescot T, Karvellas C, Beaussier M, et al. Acquired liver injury in the intensive care unit[J]. Anesthesiology, 2012, 117: 898-904. DOI: 10.1097/ALN.0b013e318266c6df
[35] Joannidis M, Druml W, Forni LG, et al. Prevention of acute kidney injury and protection of renal function in the intensive care unit: update 2017: expert opinion of the working group on prevention, AKI section, European Society of Intensive Care Medicine[J]. Intensive Care Med, 2017, 43: 730-749. DOI: 10.1007/s00134-017-4832-y
[36] Gofton TE, Young GB. Sepsis-associated encephalopathy[J]. Nat Rev Neurol, 2012, 8: 557-566. DOI: 10.1038/nrneurol.2012.183
[37] Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign: international guidelines for management of sepsis and septic shock: 2016[J]. Intensive Care Med, 2017, 43: 304-377. DOI: 10.1007/s00134-017-4683-6
[38] Wang N, Liu X, Zheng X, et al. Ulinastatin is a novel candidate drug for sepsis and secondary acute lung injury, evidence from an optimized CLP rat model[J]. Int Immunopharmacol, 2013, 17: 799-807. DOI: 10.1016/j.intimp.2013.09.004
[39] He QL, Zhong F, Ye F, et al. Does intraoperative ulinastatin improve postoperative clinical outcomes in patients undergoing cardiac surgery: a meta-analysis of randomized controlled trials[J]. Biomed Res Int, 2014, 2014: 630835. http://pubmedcentralcanada.ca/pmcc/articles/PMC3964764/
[40] Karnad DR, Bhadade R, Verma PK, et al. Intravenous administration of ulinastatin (human urinary trypsin inhibitor) in severe sepsis: a multicenter randomized controlled study[J]. Intensive Care Med, 2014, 40: 830-838. DOI: 10.1007/s00134-014-3278-8
[41] Pei F, Guan X, Wu J. Thymosin alpha 1 treatment for patients with sepsis[J]. Expert Opin Biol Ther, 2018, 18: 71-76. DOI: 10.1080/14712598.2018.1484104
[42] Liu MW, Wang YH, Qian CY, et al. Xuebijing exerts protective effects on lung permeability leakage and lung injury by upregulating Toll-interacting protein expression in rats with sepsis[J]. Int J Mol Med, 2014, 34: 1492-1504. DOI: 10.3892/ijmm.2014.1943
[43] Yin Q, Li C. Treatment effects of xuebijing injection in severe septic patients with disseminated intravascular coagula-tion[J]. Evid Based Complement Alternat Med, 2014, 2014: 949254.
[44] Zhang Y, Chen H, Li YM, et al. Thymosin alpha1- and ulinastatin-based immunomodulatory strategy for sepsis arising from intra-abdominal infection due to carbapenem-resistant bacteria[J]. J Infect Dis, 2008, 198: 723-730. DOI: 10.1086/590500
[45] Martín S, Pérez A, Aldecoa C. Sepsis and immunosenescence in the elderly patient: a review[J]. Front Med (Lausanne), 2017, 4: 20. http://www.ncbi.nlm.nih.gov/pubmed/28293557
-
期刊类型引用(10)
1. 董文杰,杨彦,王伟,苏燕,李晓琳. 自主模拟临床诊断病毒感染性疾病教学模式初探. 中国多媒体与网络教学学报(上旬刊). 2024(06): 217-220 . 百度学术
2. 林慧珍,李泰阶,黄师,林青,王柏莲,蒋诚传,石姗以. 关于在MALDI-TOF MS技术背景下提高临床微生物检验实习教学能力的探讨. 中国卫生产业. 2024(02): 238-241 . 百度学术
3. 李秀珍,刘风琴,王芳,郭树静. 焦磷酸测序对药品中5种致病菌的快速鉴定方法. 中国医药科学. 2022(01): 55-58 . 百度学术
4. 李永军,王雅杰. 宏基因组耐药基因的报告与解读. 现代医学与健康研究电子杂志. 2022(06): 89-92 . 百度学术
5. 张江峰,马冰,楚亚菲,许俊红,徐文博,王山梅,曹雪芳,陈晓曦,李轶. 病原宏基因组测序技术及其在临床感染辅助诊断中的应用研究. 华西医学. 2022(08): 1134-1139 . 百度学术
6. 王婧,陈勃江,周永召,李为民. 宏基因组下一代测序技术检测呼吸道病原体耐药性的应用价值探讨. 华西医学. 2022(08): 1121-1127 . 百度学术
7. 贾贞,胡仁静,陈道桢. 青海省海东市二级以上公立医疗卫生机构微生物实验室现状调查. 检验医学与临床. 2022(20): 2863-2867 . 百度学术
8. 陆思芬,周永召,王刚,王婧,江娟,邓竹君,张文庚,李为民. 基于宏基因组二代测序技术的840例疑似肺部感染患者下呼吸道微生物特征分析. 中国呼吸与危重监护杂志. 2022(06): 403-411 . 百度学术
9. 黄炽燊,李抄,杜耀华. 生物传感器环形偶极子共振超表面的仿真设计. 医疗卫生装备. 2022(12): 15-20+26 . 百度学术
10. 高丹丹,冀旭峰,郭志敏,许建成. 实验诊断学临床微生物学实习课教学改革与探讨. 高校医学教学研究(电子版). 2021(04): 32-35 . 百度学术
其他类型引用(3)
计量
- 文章访问数:
- HTML全文浏览量:
- PDF下载量:
- 被引次数: 13