-
摘要: 肿瘤相关自身抗体是由肿瘤相关抗原的异常暴露或呈递促进自身免疫反应而产生。该抗体水平可提前数月或数年于肿瘤患者体内升高,参与肿瘤恶性转化的发生与发展。近年来,肿瘤相关自身抗体的研究和应用为肿瘤的早期预警、危险评估、诊断、预后及治疗效果判断提供了重要参考依据。本文探讨肿瘤相关自身抗体产生机制、结缔组织病合并肿瘤和恶性肿瘤相关自身抗体的临床应用现状与研究进展,并对未来前景作出展望。Abstract: Tumor-associated autoantibodies are produced by abnormal exposure or presentation of tumor-associated antigen that promote autoimmune responses, elevation of which could be months or years in advance and participate in the occurrence and development of malignant transformation of tumors. In recent years, clinical application of tumor-associated autoantibodies has become increasingly prominent and provided a reference for early warning, risk assessment, diagnosis, prognosis and therapeutic efficacy in patients with cancer. This review mainly focused on the production mechanism, the status quo and future prospective of clinical application as well as research progress of tumor-associated autoantibodies in connective tissue diseases combined with tumors and malignancy.
-
Keywords:
- tumor-associated autoantibodies /
- connective tissue diseases /
- malignancy /
- biomarker /
- diagnosis
-
肿瘤是威胁人类生命健康的重要疾病,全球每年新发肿瘤约2450万例,死亡率高达39.2%[1]。早期诊断和治疗可有效降低肿瘤患者的死亡风险。肿瘤患者血清中含有一组独特的诱发自身抗体反应的细胞蛋白,被称为肿瘤相关抗原(tumor-associated antigen, TAA), 其诱导产生的抗体称为肿瘤相关自身抗体[2]。鉴于肿瘤相关自身抗体检测具有非入侵性、抗体不易降解且可重复性高的优势,可为临床提供肿瘤免疫应答信息、分子侵袭状态,有效减少漏诊与误诊,协助临床精准诊断早期癌症并及时调整治疗方案。本文结合结缔组织病(connective tissue diseases, CTD)与恶性肿瘤,探讨肿瘤相关自身抗体及其临床应用现状与前景。
1. 肿瘤相关自身抗体产生机制
1966年,Baldwin[3]发现在肿瘤发展的极早期,人体免疫系统即可产生针对肿瘤细胞的特异性自身抗体。1970年,Taylor等[4]最早发现了乳腺癌自身抗体。1995年,Lubin等[5]揭示p53自身抗体与肺癌进展显著相关。肿瘤相关自身抗体的产生反映了患者对癌细胞免疫反应性与免疫监视的增强,但其产生机制目前尚不明确,主流观点可归纳为:(1)免疫耐受缺陷导致自身反应性B细胞重获反应性,持续存在的肿瘤炎症微环境增强了血管渗透性,使大量TAA暴露于免疫系统;(2)蛋白质表达水平改变:TAA过表达及在异常部位表达与各种癌症类型患者自身抗体的自发产生密切相关;(3)蛋白质结构改变:表位扩展、表位模拟、突变以及翻译后,修饰诱发新表位产生与表位呈递增强,扩大了免疫反应与特异性自身抗体的形成;(4) 细胞死亡机制导致细胞内抗原异常释放并暴露于免疫系统,有效触发肿瘤免疫应答与自身抗体的产生[6]。近年研究发现,肿瘤内三级淋巴结构有助于B细胞的激活、扩张和分化[7]。肿瘤浸润的B细胞具有产生识别肿瘤表面和凋亡肿瘤细胞释放的抗原及调节肿瘤生长自身抗体的能力,且IgG亚型能激活树突状细胞以防止肿瘤复发或转移[8]。因此,对于肿瘤相关自身抗体产生机制的研究可推动新型肿瘤相关自身抗体标志物及其检测手段的发展,并有助于治疗靶点的识别。
2. 结缔组织病与肿瘤相关自身抗体
由T、B淋巴细胞克隆清除和中枢耐受丧失而产生的自身抗体在引发CTD的同时与TAA发生交叉反应参与肿瘤进展。主要体现为两种形式:(1)CTD与肿瘤并发;(2)肿瘤存在结缔组织症状。
CTD患恶性肿瘤的风险明显增加,不同CTD并发的肿瘤类型差异较大且无显著关联。系统性硬化症(systemic sclerosis, SSc)并发恶性肿瘤的概率为4%~22%,常见类型包括乳腺癌(30.2%)、黑色素瘤(18.5%)、血液系统恶性肿瘤(13.5%)、女性生殖系统恶性肿瘤(13.5%)和肺癌(10.2%)[9]。多发性肌炎(polymyositis, PM)和皮肌炎(dermatomy-ositis, DM)并发恶性肿瘤的概率为2.5%~29.0%,其中PM并发恶性肿瘤的风险较一般人群增加30%(SIR=1.3, 95% CI: 1.0~1.6), 以非霍奇金淋巴瘤、肺癌和膀胱癌最为常见;DM并发恶性肿瘤的风险是一般人群的3倍(SIR=3.0, 95% CI: 2.5~3.6),以卵巢癌、肺癌、胰腺癌最为常见[10]。因此,针对不同CTD、不同肿瘤类型划分风险层级,科学选择不同时间间隔、指标和工具进行分层检测有利于降低检测成本,提高早期癌症诊断效率。
2.1 系统性硬化症合并肿瘤相关自身抗体
抗RNA聚合酶Ⅲ抗体(anti-RNA polymerases Ⅲ Ab, anti-RNP-Ⅲ)阳性(31.8%)的SSc患者比抗拓扑异构酶Ⅰ抗体阳性(2.4%)或抗着丝粒抗体阳性(5.8%)的患者更易罹患恶性肿瘤[11]。anti-RNP-Ⅲ阳性SSc患者的恶性肿瘤发生率为17.7%~43.8%,且存在POLR3A基因突变[12]。依据SSc疾病亚型对抗体阳性患者进行癌症风险分层,可制定更有针对性的癌症检测方案:anti-RNP-Ⅲ阳性的弥漫性SSc患者患乳腺癌的风险增加(SIR=5.14, 95% CI: 2.66~8.98),局限性SSc患者患肺癌的风险是弥漫性SSc患者的10.4倍(SIR=10.4, 95% CI: 1.26~37.7)[13],故对于anti-RNP-Ⅲ阳性患者,建议在SSc诊断时进行恶性肿瘤筛查,并在接下来的几年内进行严格随访观察。此外,anti-RNP-Ⅲ与SSc患者恶性肿瘤的发生时间关系密切,该抗体阳性可提示SSc确诊前后的癌症诊断风险(SSc确诊:-2年~+1.3年,HR=1.94, 95% CI: 1.00~3.73),因此其可作为预测恶性肿瘤的生物标志物[14]。以色列一项研究表明[15],抗核抗体、抗Scl-70抗体和抗RNP抗体缺失与SSc并发恶性肿瘤患者存活率低有关,而抗着丝粒抗体和anti-RNP-Ⅲ对患者存活率并无显著影响。此外,抗Scl-70抗体可预测SSc癌症患者的死亡风险(HR= 1.39, 95% CI: 1.08~1.80),而抗核抗体的存在对疾病具有保护性意义(HR=0.64, 95% CI: 0.5~0.83)。
RNPC3是微小剪接体复合体的蛋白组分,参与去除Pre-mRNA中U12内含子[16]。抗拓扑异构酶Ⅰ抗体、抗着丝粒抗体和anti-RNP-Ⅲ同时阴性的SSc并发恶性肿瘤的患者中,约25%存在抗RNPC3抗体[17]。抗RNPC3抗体与SSc并发恶性肿瘤风险相关:与抗着丝粒抗体相比,抗RNPC3抗体(OR=4.3, 95% CI: 1.10~16.9)和anti-RNP-Ⅲ阳性患者(OR=4.49, 95% CI: 1.98~10.2)在SSc发病2年内并发恶性肿瘤风险增加3倍以上。与其他自身抗体亚组的患者相比,具有抗RNPC3抗体的患者预后更差,中位生存期缩短50%。值得注意的是,在抗RNPC3抗体组中,大多数恶性肿瘤(66.7%)为妇科肿瘤,其中乳腺癌占50%。
2.2 多发性肌炎/皮肌炎合并肿瘤相关自身抗体
抗转录中介因子1-γ(anti-transcription inter-mediary factor 1-γ, anti-TIF1-γ)抗体与DM相关恶性肿瘤密切相关,7%~31%的成年DM患者anti-TIF1-γ抗体阳性,高达84% anti-TIF1-γ抗体阳性的DM患者伴发肿瘤[18],其中卵巢癌发生率明显高于阴性患者(19%比2%),年龄大于39岁且anti-TIF1-γ抗体阳性的DM患者患癌风险升高(HR=1.04, 95% CI: 1.02~1.07)[19],因此建议对anti-TIF1-γ抗体阳性,尤其是老年和女性患者进行至少3~5年的癌症指标监测和筛查。荟萃分析[20]表明,anti-TIF1-γ抗体在诊断DM合并肿瘤时特异度较高(92%, 95% CI: 90%~93%),但总体灵敏度较低(52%, 95% CI: 47%~57%),故对于肿瘤诊断与风险分层具有重要价值。免疫沉淀法是该抗体检测的首选方法,对诊断肿瘤相关DM的总体灵敏度(78%, 95% CI: 45%~94%)和特异度均较好(89%, 95% CI: 82%~93%), 但由于其技术复杂且难以解释,并未应用于常规临床检测。利用可定位激光小珠免疫测定法(截断值:2 AU/mL)检测anti-TIF1-γ抗体被证实具有较高的灵敏度(96%)与特异度(99%),适用于常规检测[21]。此外,anti-TIF1-γ抗体阳性的DM患者通常预后较差,IgG2亚型anti-TIF1-γ抗体与死亡结局密切相关(HR=5.9, 95% CI: 2.4~14.1)。anti-TIF1-γ抗体滴度在治疗后重新升高提示肿瘤复发及DM疾病活动可能[21-22]。故连续性监测anti-TIF1-γ抗体对预防肿瘤复发、预测疾病活动度及不良预后结局具有重要意义。
抗氨基酰tRNA合成酶(anti-aminoacyl-tRNA synthetase, anti-ARS)抗体包括抗Jo-1、抗EJ、抗OJ、抗PL-7、抗PL-12和抗KS 6种特异性抗体。约8.4%的anti-ARS抗体阳性PM/DM患者常伴发胃癌、乳腺癌、肺癌等恶性肿瘤[23],但肿瘤发生率、类型与anti-ARS抗体类型无关,考虑到anti-ARS抗体阳性患者的额外肿瘤风险,需在诊断时进行筛查。抗小泛素样修饰物活化酶(anti-small ubiquitin-like modifier activating enzyme, anti-SAE)抗体在DM患者中阳性率<10%,其中23%合并恶性肿瘤[24],一项中国肌炎患者的队列研究提示,该抗体阳性与PM/DM癌症风险增加独立相关(SIR=12.92, 95% CI: 3.23~32.94),主要表现为肺癌、消化系统肿瘤和妇科肿瘤[25]。抗3-羟基-3-甲基戊二酰辅酶A还原酶(anti-3-hydroxy-3-methylglutarylcoenzyme A reductase, anti-HMGCR)抗体阳性DM患者肿瘤发生率为8.3%[26]。此外,对大于50岁、anti-HMGCR阳性的坏死性免疫性肌病患者进行肿瘤筛查对肿瘤早期发现和治疗具有重要价值。
3. 恶性肿瘤相关自身抗体
肿瘤相关自身抗体的出现伴随肿瘤发生,是机体抗肿瘤免疫应答的结果。调控细胞周期、参与DNA修复和细胞凋亡的p53突变可诱发广泛的细胞癌变,突变后的p53长期刺激免疫系统产生泛肿瘤标志物抗p53抗体。常规肿瘤标志物与抗p53抗体的联合应用能够提高食管癌与结直肠癌检出率[27],预示晚期食管鳞癌患者肿瘤残留及复发风险,与较差预后相关[28]。p53抗体可改善单独检测CA125诊断浸润性上皮性卵巢癌的性能[29],同时被证明与乳腺癌侵袭性有关[30]。因此,肿瘤相关自身抗体的单独检测及联合应用对于不同肿瘤早期/伴随诊断、治疗监测和预后均具有重要意义。
3.1 肺癌相关自身抗体
肺癌的早期筛查依赖于低剂量螺旋CT,由于其常伴随50%的假阳性结果,故需对大量患者进行随访监测。抗ECH1抗体可特异性区分肺癌与健康人群,且该抗体滴度与肿瘤大小呈负相关。抗HNRNP2B1抗体相比抗ECH1抗体对鉴别诊断肺癌具有优势,其灵敏度、特异度分别为72.2%和95.5%,曲线下面积(area under the curve,AUC)为0.874,同时该抗体水平与淋巴结转移呈负相关[31]。值得注意的是,升高的抗ECH1抗体可在肺癌诊断前两年被检出,其在识别早期肺癌方面能够发挥关键作用(灵敏度:60.0%,特异度:89.3%,AUC:0.763)。一项多肽芯片研究证实,抗p53、抗Annexin A1以及抗Annexin A2抗体主要出现在肺腺癌患者中,其诊断早期非小细胞肺癌的AUC分别为0.63、0.78、0.76[32]。此外,肿瘤相关自身抗体还可预测非小细胞肺癌患者对于抗程序性死亡受体1(programmed death 1,PD-1)治疗有无应答效应[33],即抗SIX2抗体在无应答患者体内明显升高,可准确区分治疗第3、6个月对抗PD-1治疗无应答和有应答的患者(AUC:0.87和0.90)。
3.2 乳腺癌相关自身抗体
乳腺癌的主要筛查手段是超声和X线,通常无法发现微小病变。血清学CA15-3水平与乳腺癌的复发及转移呈正相关,但由于其灵敏度和特异度较低,在乳腺癌早期诊断及预测术后复发风险的应用受到极大限制。抗p16、c-Myc、p53和ANXA1抗体在乳腺癌及不同分期中的表达高于健康对照组,4种抗体组合鉴别诊断乳腺癌患者与健康人群的特异度均为90%,在区分乳腺癌、Ⅰ/Ⅱ期乳腺癌、Ⅲ/Ⅳ期乳腺癌方面,单个抗体灵敏度较低,但联合检测优于单独检测[34],可用于早期乳腺癌分期。Videssa Breast在33种肿瘤相关自身抗体中选择10种抗体优化预测乳腺癌发生的训练模型,其灵敏度、特异度、AUC分别为66.7%、81.5%和0.6558[35]。抗A1AT、ANGPTL4、CAPC、CST2、DKK1、GFRA1、GRN、LGALS3、LRP10抗体被证实在进行12个月放化疗和激素联合治疗的乳腺癌患者血浆中明显下降,提示其滴度可用于反映乳腺癌患者的治疗效果及有无应答[36]。
3.3 结/直肠癌相关自身抗体
血浆甲基化Septin 9基因是美国食品药品监督管理局批准的唯一基于血液的结/直肠癌筛查方法,在特异度为91.5%时,其对结/直肠癌和晚期腺瘤的诊断灵敏度分别为48.2%和11.2%,诊断性能欠佳[37]。抗p53抗体阳性与患者3年内确诊结肠癌的关联最强(HR=2.26, 95% CI: 1.06~4.83)[38],因此该抗体可能对早期预警结/直肠癌具有重要作用。抗GDF-15、AREG、FasL、Flt3L和p53抗体的预测模型具有良好的诊断效能,以特异度90%为界值,其识别早期结/直肠癌和晚期腺瘤的灵敏度分别为56.4%和22.0%,AUC分别为0.82和0.60[39]。IgM抗CADM1、ICLN、SEC16、ZNF768抗体和IgG抗HMGB1、p53、ZNF700抗体联合检测能够以70.8%的灵敏度及86.5%的特异度准确将结/直肠癌患者与正常人群或腺瘤患者区分开来。同时,血清IgM型抗ICLN抗体阳性的患者5年生存率明显低于血清抗体阴性患者[40],表明其在结/直肠癌患者的疾病诊断和预后方面发挥重要价值。在治疗方面,抗p53抗体水平随患者放疗的应答率提高而明显下降,89%治疗前抗体滴度高的患者在治疗后出现肺转移和肿瘤复发现象[41],提示该抗体可能作为指导结/直肠癌患者放疗剂量和治疗方案调整的参考指标。
3.4 肝癌相关自身抗体
诊断原发性肝癌的生物标志物为甲胎蛋白(alpha-fetoprotein, AFP),但其灵敏度不能满足临床需求。为提高肝癌的诊断效能,利用ELISA法联合检测抗XC24p11表位自身抗体(anti-SF3B1)和AFP时[42],灵敏度为87.25%,特异度为90.59%(AUC:0.908),提示其可有效鉴别肝癌患者与正常人血清标本。Zhang等[43]根据蛋白质芯片的筛选结果,通过人工神经网络算法构建了由7种自身抗体(抗CIAPIN1、EGFR、MAS1、SLC44A3、ASAH1、UBL7和ZNF428抗体)组成的标志物组合,该组合与AFP相比对于肝癌的诊断价值显著提升(灵敏度:71.6%,特异度:90.0%,AUC:0.898)。该标志物组合对于AFP阴性的肝癌患者也具有良好的诊断价值。对于早期肝癌的识别,上述7种抗体联合应用诊断效能优于AFP,AUC增加约10%。因此,同时检测肿瘤相关自身抗体不仅有利于早期识别肝癌,还能够有效区分肝癌患者和正常人群及肝硬化患者,指导临床医生调整治疗方案,并对疑似癌症患者进行影像或组织学监测。
3.5 食管鳞状细胞癌相关自身抗体
食管鳞状细胞癌(esophageal squamous cell carcinoma, ESCC)的侵入性内镜检查和黏膜活检在无症状人群早期筛查中受到限制,故有必要开发新型非入侵性生物标志物作为早期筛查指标,以提高患者的生存率。抗p53、HRAS、CTAG1A、NSG1抗体组合对于ESCC具有一定的诊断价值[44]:ELISA法检测时,该组合能显著区分早期ESCC与良性病变患者及健康对照人群(灵敏度:62.8%,特异度:88.9%)。Zhang等[45]发现,ESCC患者血清中抗TOPO48抗体可鉴别早期ESCC患者和健康对照人群,且具有较高的特异度(100%)和足够的灵敏度(61.8%);抗TOPO48自身抗体与抗p53自身抗体或鳞状细胞癌抗原联合应用可显著提高肿瘤早期诊断的灵敏度(80.0%);且该抗体与ESCC良好的预后有关(HR=0.417, 95% CI: 0.388~0.717),无淋巴结转移者该抗体水平明显高于有淋巴结转移者;此外,抗p53抗体阴性患者的抗TOPO48抗体平均水平明显高于阳性者,证实其可作为抗p53抗体的补充指标参与ESCC早期诊断和预后判断。
3.6 卵巢癌相关自身抗体
CA125对早期卵巢癌的诊断灵敏度低(50%),但特异度高(99%),需要血清学生物标志物联合应用以降低单一指标的假阴性率。利用Luminex ELISA联合检测抗p53、PTPRA和PTGFR抗体[46],3种抗体中至少两种为阳性时诊断浆液性卵巢癌患者的灵敏度为23.3%,特异度为98.3%;至少一种抗体在低CA125患者血清的检出率为35%,提示上述抗体可作为CA125补充检测的特异性指标。Wang等[47]发现9种肿瘤相关自身抗体(抗TO53、C-myc、p90、p62、AHSG、14-3-3zeta、Rala、Koc和p16抗体) 与CA125联合检测时,诊断卵巢癌的灵敏度、特异度及AUC可达94.7%、78.2%和0.914。CA125正常的卵巢癌患者血清中此9种抗体阳性率为78.8%,提示CA125和肿瘤相关自身抗体是独立诊断卵巢癌的辅助性指标。另外,抗p53抗体可能是卵巢上皮癌术后或放化疗后检测最小肿瘤残留的高度敏感指标,该抗体阴性血清学转化与无进展生存期延长相关[48]。
3.7 其他
肿瘤相关自身抗体在其他癌症中也受到广泛的研究和应用。抗PARK7、TARDBP、TLN1、CALD抗体与游离/总前列腺特异性抗原联合检测较单独检测更能准确区分前列腺癌与良性前列腺增生,AUC可达0.916[49]。9种肿瘤相关自身抗体(抗c-Myc、p16、HSPD1、PTEN、TP53p53、NPM1、ENO1、p62、HCC1.4抗体)组合可有效识别胃腺癌患者(灵敏度:71.5%,特异度:71.3%,AUC:0.857),同时还具有鉴别淋巴结转移、分化程度的潜在功能;两种以上抗体阳性的胃腺癌患者较一种抗体阳性或抗体阴性的患者预后更差[50]。抗C1GALT1抗体在头颈鳞癌中具有一定预后意义,与肿瘤转移、患者生存期缩短密切相关。Lin等[51]研究发现,在接受尼鲁单抗或派姆单抗的复发或转移性头颈部鳞状细胞癌患者中,更高的抗C1GALT1抗体滴度意味着更好的免疫治疗反应且该抗体可有效区分免疫治疗应答和无应答患者(AUC:0.92),表明抗C1GALT1抗体可应用于头颈鳞状细胞癌患者的个体化免疫治疗。
4. 展望
肿瘤相关自身抗体的高特异性使其具有较好的临床应用前景,自身抗体标志物及肿瘤相关自身抗体的联合应用优于单一自身抗体,自身抗体组合与临床常规检查结合可进一步提升在肿瘤早期诊断中的价值。目前,肿瘤相关自身抗体及其组合对于肿瘤患者病情监测、反映预后和免疫治疗效果方面的意义仍需深入探索。基于大样本快速筛选和验证的免疫印迹、质谱和蛋白芯片法有望推动肿瘤相关自身抗体的研究进程,未来针对TAA及其抗体的肿瘤免疫治疗必将蓬勃发展。
作者贡献:詹皓婷负责检索文献,撰写、修订论文; 李永哲提出选题思路,并负责修订、审校论文。利益冲突:无 -
[1] Fitzmaurice C, Abate D, Abbasi N, et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study[J]. JAMA Oncol, 2019, 5: 1749-1768.
[2] Doyle HA, Gee RJ, Mamula MJ. A failure to repair self-proteins leads to T cell hyperproliferation and autoantibody production[J]. J Immunol, 2003, 171: 2840-2847. DOI: 10.4049/jimmunol.171.6.2840
[3] Baldwin RW. Tumour-specific immunity against spontaneous rat tumours[J]. Int J Cancer, 1966, 1: 257-264. DOI: 10.1002/ijc.2910010305
[4] Taylor G, Odili JL. Tumour specific T-like antigen of human breast carcinoma[J]. Br J Cancer, 1970, 24: 447-453. DOI: 10.1038/bjc.1970.53
[5] Lubin R, Zalcman G, Bouchet L, et al. Serum p53 antibodies as early markers of lung cancer[J]. Nat Med, 1995, 1: 701-702. DOI: 10.1038/nm0795-701
[6] Zaenker P, Gray ES, Ziman MR. Autoantibody Production in Cancer--The Humoral Immune Response toward Autolog-ous Antigens in Cancer Patients[J]. Autoimmun Rev, 2016, 15: 477-483. DOI: 10.1016/j.autrev.2016.01.017
[7] Yoshitomi H, Ueno H. Shared and distinct roles of T peripheral helper and T follicular helper cells in human diseases[J]. Cell Mol Immunol, 2021, 18: 523-527. DOI: 10.1038/s41423-020-00529-z
[8] Horii M, Matsushita T. Regulatory B cells and T cell Regulation in Cancer[J]. J Mol Biol, 2021, 433: 166685. DOI: 10.1016/j.jmb.2020.10.019
[9] Morrisroe K, Hansen D, Huq M, et al. Incidence, Risk Factors, and Outcomes of Cancer in Systemic Sclerosis[J]. Arthritis Care Res (Hoboken), 2020, 72: 1625-1635. DOI: 10.1002/acr.24076
[10] Hill CL, Zhang Y, Sigurgeirsson B, et al. Frequency of specific cancer types in dermatomyositis and polymyositis: a population-based study[J]. Lancet, 2001, 357: 96-100. DOI: 10.1016/S0140-6736(00)03540-6
[11] Saigusa R, Asano Y, Nakamura K, et al. Association of anti-RNA polymerase Ⅲ antibody and malignancy in Japanese patients with systemic sclerosis[J]. J Dermatol, 2015, 42: 524-527. DOI: 10.1111/1346-8138.12827
[12] Wielosz E, Dryglewska M, Majdan M. Clinical conse-quences of the presence of anti-RNA Pol Ⅲ antibodies in systemic sclerosis[J]. Postepy Dermatol Alergol, 2020, 37: 909-914. DOI: 10.5114/ada.2020.102107
[13] Igusa T, Hummers LK, Visvanathan K, et al. Autoanti-bodies and scleroderma phenotype define subgroups at high-risk and low-risk for cancer[J]. Ann Rheum Dis, 2018, 77: 1179-1186. http://ard.bmj.com/content/77/8/1179.full
[14] Shah AA, Rosen A, Hummers L, et al. Close temporal relationship between onset of cancer and scleroderma in patients with RNA polymerase Ⅰ/Ⅲ antibodies[J]. Arthritis Rheum, 2010, 62: 2787-2795. DOI: 10.1002/art.27549
[15] Watad A, McGonagle D, Bragazzi NL, et al. Autoantibody status in systemic sclerosis patients defines both cancer risk and survival with ANA negativity in cases with concomitant cancer having a worse survival[J]. Oncoimmunology, 2019, 8: e1588084. DOI: 10.1080/2162402X.2019.1588084
[16] Xu GJ, Shah AA, Li MZ, et al. Systematic autoantigen analysis identifies a distinct subtype of scleroderma with coincident cancer[J]. Proc Natl Acad Sci U S A, 2016, 113: E7526-E7534. DOI: 10.1073/pnas.1615990113
[17] Shah AA, Xu G, Rosen A, et al. Brief Report: Anti-RNPC-3 Antibodies As a Marker of Cancer-Associated Scleroderma[J]. Arthritis Rheumatol, 2017, 69: 1306-1312. DOI: 10.1002/art.40065
[18] Aussy A, Boyer O, Cordel N. Dermatomyositis and Immune-Mediated Necrotizing Myopathies: A Window on Autoim-munity and Cancer[J]. Front Immunol, 2017, 8: 992. DOI: 10.3389/fimmu.2017.00992
[19] Oldroyd A, Sergeant JC, New P, et al. The temporal relationship between cancer and adult onset anti-transcriptional intermediary factor 1 antibody-positive dermatomyositis[J]. Rheumatology (Oxford), 2019, 58: 650-655. DOI: 10.1093/rheumatology/key357
[20] Best M, Molinari N, Chasset F, et al. Use of Anti-transcriptional Intermediary Factor-1 Gamma Autoantibody in Identifying Adult Dermatomyositis Patients with Cancer: A Systematic Review and Meta-analysis[J]. Acta Derm Venereol, 2019, 99: 256-262. DOI: 10.2340/00015555-3091
[21] Aussy A, Fréret M, Gallay L, et al. The IgG2 Isotype of Anti-Transcription Intermediary Factor 1γ Autoantibodies Is a Biomarker of Cancer and Mortality in Adult Dermatomyo-sitis[J]. Arthritis Rheumatol, 2019, 71: 1360-1370. http://www.ncbi.nlm.nih.gov/pubmed/30896088
[22] Ikeda N, Yamaguchi Y, Kanaoka M, et al. Clinical significance of serum levels of anti-transcriptional intermediary factor 1-γ antibody in patients with dermatomyositis[J]. J Dermatol, 2020, 47: 490-496. DOI: 10.1111/1346-8138.15284
[23] Satoh M, Tanaka S, Ceribelli A, et al. A Comprehensive Overview on Myositis-Specific Antibodies: New and Old Biomarkers in Idiopathic Inflammatory Myopathy[J]. Clin Rev Allergy Immunol, 2017, 52: 1-19. DOI: 10.1007/s12016-015-8510-y
[24] Ge Y, Lu X, Shu X, et al. Clinical characteristics of anti-SAE antibodies in Chinese patients with dermatomyositis in comparison with different patient cohorts[J]. Sci Rep, 2017, 7: 188. DOI: 10.1038/s41598-017-00240-6
[25] Yang H, Peng Q, Yin L, et al. Identification of multiple cancer-associated myositis-specific autoantibodies in idiopa-thic inflammatory myopathies: a large longitudinal cohort study[J]. Arthritis Res Ther, 2017, 19: 259. DOI: 10.1186/s13075-017-1469-8
[26] Kadoya M, Hida A, Hashimoto Maeda M, et al. Cancer association as a risk factor for anti-HMGCR antibody-positive myopathy[J]. Neurol Neuroimmunol Neuroinflamm, 2016, 3: e290. DOI: 10.1212/NXI.0000000000000290
[27] Yajima S, Suzuki T, Oshima Y, et al. New Assay System Elecsys Anti-p53 to Detect Serum Anti-p53 Antibodies in Esophageal Cancer Patients and Colorectal Cancer Patients: Multi-institutional Study[J]. Ann Surg Oncol, 2020. doi: 10.1245/s10434-020-09342-4.
[28] Takashi S, Satoshi Y, Akihiko O, et al. Clinical impact of preoperative serum p53 antibody titers in 1487 patients with surgically treated esophageal squamous cell carcinoma: a multi-institutional study[J]. Esophagus, 2021, 18: 65-71. DOI: 10.1007/s10388-020-00761-6
[29] Yang WL, Gentry-Maharaj A, Simmons A, et al. Elevation of TP53 Autoantibody Before CA125 in Preclinical Invasive Epithelial Ovarian Cancer[J]. Clin Cancer Res, 2017, 23: 5912-5922. DOI: 10.1158/1078-0432.CCR-17-0284
[30] Tokunaga E, Takizawa K, Masuda T, et al. Tumor-infiltrating lymphocytes and serum anti-p53 autoantibody in HER2-positive breast cancer treated with neoadjuvant chemotherapy[J]. J Clin Oncol, 2018, 36: e12648. DOI: 10.1200/JCO.2018.36.15_suppl.e12648
[31] Dai L, Li J, Tsay JJ, et al. Identification of autoantibodies to ECH1 and HNRNPA2B1 as potential biomarkers in the early detection of lung cancer[J]. Oncoimmunology, 2017, 6: e1310359. DOI: 10.1080/2162402X.2017.1310359
[32] Yan Y, Sun N, Wang H, et al. Whole Genome-Derived Tiled Peptide Arrays Detect Prediagnostic Autoantibody Signatures in Non-Small-Cell Lung Cancer[J]. Cancer Res, 2019, 79: 1549-1557. DOI: 10.1158/0008-5472.CAN-18-1536
[33] Tan Q, Wang D, Yang J, et al. Autoantibody profiling identifies predictive biomarkers of response to anti-PD1 therapy in cancer patients[J]. Theranostics, 2020, 10: 6399-6410. http://www.researchgate.net/publication/341608156_Autoantibody_profiling_identifies_predictive_biomarkers_of_response_to_anti-PD1_therapy_in_cancer_patients
[34] Liu Y, Liao Y, Xiang L, et al. A panel of autoantibodies as potential early diagnostic serum biomarkers in patients with breast cancer[J]. Int J Clin Oncol, 2017, 22: 291-296. http://europepmc.org/abstract/MED/27778118
[35] Lourenco AP, Benson KL, Henderson MC, et al. A Noninvasive Blood-based Combinatorial Proteomic Biomarker Assay to Detect Breast Cancer in Women Under the Age of 50 Years[J]. Clin Breast Cancer, 2017, 17: 516-525. e6. DOI: 10.1016/j.clbc.2017.05.004
[36] Evans RL, Pottala JV, Nagata S, et al. Longitudinal autoantibody responses against tumor-associated antigens decrease in breast cancer patients according to treatment modality[J]. BMC Cancer, 2018, 18: 119.
[37] Church TR, Wandell M, Lofton-Day C, et al. Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer[J]. Gut, 2014, 63: 317-325. http://www.ncbi.nlm.nih.gov/pubmed/23408352/
[38] Teras LR, Gapstur SM, Maliniak ML, et al. Prediagnostic Antibodies to Serum p53 and Subsequent Colorectal Cancer[J]. Cancer Epidemiol Biomarkers Prev, 2018, 27: 219-223. http://smartsearch.nstl.gov.cn/paper_detail.html?id=69c1346c762b171cb99c35c5430404da
[39] Chen H, Qian J, Werner S, et al. Development and validation of a panel of five proteins as blood biomarkers for early detection of colorectal cancer[J]. Clin Epidemiol, 2017, 9: 517-526. http://www.ingentaconnect.com/content/doaj/11791349/2017/00000055/00000001/art00089
[40] Fitzgerald S, O'Reilly JA, Wilson E, et al. Measurement of the IgM and IgG Autoantibody Immune Responses in Human Serum has High Predictive Value for the Presence of Colorectal Cancer[J]. Clin Colorectal Cancer, 2019, 18: e53-e60. http://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsRW5nTmV3UzIwMjEwMzAyEiAzNGI5Y2UzNjhiYTViYWRjY2EzYTA3ZGYxNjJkMjIxYhoIcHZrMmFpdWs%3D
[41] Nozawa H, Ishihara S, Kawai K, et al. Paradoxical Reductions in Serum Anti-p53 Autoantibody Levels by Chemo-therapy in Unresectable Colorectal Cancer: An Observational Study[J]. Oncology, 2016, 91: 127-134. DOI: 10.1159/000447241
[42] Hwang HM, Heo CK, Lee HJ, et al. Identification of anti-SF3B1 autoantibody as a diagnostic marker in patients with hepatocellular carcinoma[J]. J Transl Med, 2018, 16: 177. DOI: 10.1186/s12967-018-1546-z
[43] Zhang S, Liu Y, Chen J, et al. Autoantibody signature in hepatocellular carcinoma using seromics[J]. J Hematol Oncol, 2020, 13: 85. DOI: 10.1186/s13045-020-00918-x
[44] Pan J, Zheng QZ, Li Y, et al. Discovery and Validation of a Serologic Autoantibody Panel for Early Diagnosis of Esophageal Squamous Cell Carcinoma[J]. Cancer Epidemiol Biomarkers Prev, 2019, 28: 1454-1460. http://www.ncbi.nlm.nih.gov/pubmed/31239266
[45] Zhang JB, Cao M, Chen J, et al. Serum anti-TOPO48 autoantibody as a biomarker for early diagnosis and prognosis in patients with esophageal squamous cell carcinoma[J]. Clin Res Hepatol Gastroenterol, 2018, 42: 276-284. http://www.sciencedirect.com/science/article/pii/S2210740117302164
[46] Anderson KS, Cramer DW, Sibani S, et al. Autoantibody signature for the serologic detection of ovarian cancer[J]. J Proteome Res, 2015, 14: 578-586. DOI: 10.1021/pr500908n
[47] Wang P, Qin J, Ye H, et al. Using a panel of multiple tumor-associated antigens to enhance the autoantibody detection in the immunodiagnosis of ovarian cancer[J]. J Cell Biochem, 2019, 120: 3091-3100. DOI: 10.1002/jcb.27497
[48] Häfner N, Nicolaus K, Weiss S, et al. p53-autoantibody may be more sensitive than CA-125 in monitoring microscopic and macroscopic residual disease after primary therapy for epithelial ovarian cancer[J]. J Cancer Res Clin Oncol, 2013, 139: 1207-1210. DOI: 10.1007/s00432-013-1432-2
[49] Xu L, Lee JR, Hao S, et al. Improved detection of prostate cancer using a magneto-nanosensor assay for serum circulat-ing autoantibodies[J]. PLoS One, 2019, 14: e0221051. http://www.researchgate.net/publication/335130859_Improved_detection_of_prostate_cancer_using_a_magneto-nanosensor_assay_for_serum_circulating_autoantibodies
[50] Qin J, Wang S, Shi J, et al. Using recursive partitioning approach to select tumor-associated antigens in immunodiagno-sis of gastric adenocarcinoma[J]. Cancer Sci, 2019, 110: 1829-1841. DOI: 10.1111/cas.14013
[51] Lin MC, Huang MC, Lou PJ. Anti-C1GALT1 Autoantibody Is a Novel Prognostic Biomarker for Patients With Head and Neck Cancer[J]. Laryngoscope, 2021, 131: E196-E202. DOI: 10.1002/lary.28694
-
期刊类型引用(1)
1. 高院,宋延峰,张晓艳,赵雪艳,高辉. 低剂量螺旋CT联合血清肺癌自身抗体在肺癌早期诊断中的临床应用. 疑难病杂志. 2023(01): 36-41 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 1086
- HTML全文浏览量: 104
- PDF下载量: 218
- 被引次数: 1