New Advances in Anesthesia Management of Enhanced Recovery After Surgery in Craniotomy
-
摘要: 加速术后康复(enhanced recovery after surgery, ERAS)是指围术期通过一系列基于循证医学证据的措施,减小手术创伤、降低并发症发生、促进患者术后康复的管理理念,良好的麻醉管理是其重要内容。开颅手术具有手术时间长、并发症发生率高的特点。近年来,随着医学技术不断进步,ERAS理念逐渐应用于开颅手术,并取得快速发展。本文对开颅手术实施ERAS麻醉管理的最新进展进行梳理和总结。Abstract: Enhanced recovery after surgery (ERAS) is a new perioperative management concept with a series of evidence-based clinical optimization protocols to minimize surgical stress response, reduce postoperative complications and enhance patients' recovery. Anesthesia management is an important content of ERAS for the approach of a multidisciplinary team. Craniotomy is one of the most high-risk operations with a long duration and a high rate of complication. In recent years, the clinical research and implementation of ERAS management in craniotomy have gradually been carried out and rapidly developed. This article reviews the new progress in anesthesia management of ERAS in craniotomy.
-
Keywords:
- enhanced recovery after surgery /
- craniotomy /
- anesthesia management /
- perioperative
-
手术是大多数先天性心脏病(下文简称“先心病”)的最终治疗手段。经过近几十年的发展,我国先心病诊疗水平已取得显著进步,外科和介入技术均趋于成熟。2019年发布的《中国心外科手术和体外循环数据白皮书》显示,我国先心病手术量为81 246例,在所有心脏手术类别中占比32%,位居第一[1]。人群死亡率方面,2017年我国先心病标化死亡率为2.63/10万,较1990年下降了50.4%,与北美地区的差距已大幅缩小[2],然而,我国先心病人群的整体预后仍不理想。根据2018年Lancet公布的医疗服务可及性和质量指数(Healthcare Access and Quality Index, HAQ)结果,中国先心病HAQ仅为36分,远低于西方发达国家[3]。此外,由于我国经济发展不均衡、医疗资源分布不均匀,先心病人群死亡率存在巨大的地域差异。2011至2013年,我国农村地区5岁以下儿童先心病死亡率为158.2/10万,是城市地区的2.3倍[4]。因此,笔者认为即使在医疗技术高度发达的今天,我国先心病诊疗体系仍然具有很大的改善空间。
1. 我国外科医疗资源可及性
1.1 外科服务能力
据统计,目前我国小儿心脏外科注册医师总数仅为350人(以13亿人口计算,约相当于每百万人口0.26人)[5],儿科注册医师总数为118 000人(以2.27亿名0~14岁儿童计算,约相当于每千名儿童0.53人)[6]。而在美国、英国、新加坡,每百万人口小儿心脏外科医师数量均>2人[7],美国每千名17岁以下儿童中,儿科注册医师数量约为1.01人[8],远高于我国。在我国723家提供心脏外科手术的医院中,年手术量不足100例的比率为53%,不足300例的比率则为79%[5]。与此同时,美国36个州共153家医院可提供先心病外科手术; 其中,73%可行高危先心病外科手术,42%的医院年手术量在151例以上[9]。以上数据提示,在先心病外科服务能力供给方面,我国与发达国家仍存在较大差距。
1.2 地域分布
我国先心病外科医疗资源存在明显的地域分布不均衡问题,具备丰富经验的治疗团队较为稀缺,且多集中于经济发达的东部地区。进一步分析《中国心外科手术和体外循环数据白皮书》发现,北方地区超过50%的先心病外科手术集中于手术量排名前10的医院; 2017年北京地区的先心病外科手术量为367例/100万,远高于陕西(124例/100万)、河南(69例/100万)等其他省份,存在大量京外地区先心病患者进入北京手术治疗的情况。优质医疗资源的集中,有助于提升效率、减少资源浪费; 然而,这往往加剧了资源分布的不均衡,导致医疗可及性进一步下降,具体反映在患者的就医难度方面。如果以就医路程和时间成本进行衡量,我国北方地区所有5岁以下儿童中,仅12.9%居住在通勤时间为半天、距离心脏中心30 km以内的区域; 而在中部和西部地区,70%以上的患者需要通勤180 km以上才能在高水平心脏中心就诊[10]。在美国等发达国家,先心病患者距离最近的心脏中心的中位距离约为32 km,仅25%的患者就医通勤距离在160 km以上[9],就医时间成本明显低于我国。因此,在外科医疗资源地域分布方面,我国与发达国家的差距仍然较大。
1.3 医疗资源可及性差带来的影响
及时的诊断和治疗是决定先心病患者存活和长期预后的关键。对于医疗可及性较差的先心病患儿,如缺乏制度上的弥补措施,可能会耽误最佳治疗时机。研究发现,对于家庭经济状况较差的复杂先心病患儿,其接受手术治疗时的年龄整体大于家庭经济条件较好的患儿[11]。一项来自中国医学科学院阜外医院横跨9年的病例研究显示,525例行全腔静脉肺动脉连接术患儿的中位手术年龄为6岁[12],比美国行同类手术的患儿晚近3年[13],说明我国复杂先心病患者存在普遍的治疗延误问题。治疗时机会影响先心病患儿尤其是低龄患儿的存活。在患有左心发育不全综合征的新生儿中,与距离最近心脏外科手术中心车程<10 min的患儿相比,车程>90 min患儿的死亡率增加108%[14]。一项来自美国的人群研究发现,家庭住址和全美排名前50心脏中心的距离与婴儿先心病死亡率独立相关。在校正年龄、性别、种族等因素后,家庭住址远离心脏中心婴儿的死亡率比接近心脏中心的婴儿人群高28%[15]。以上数据提示,医疗可及性对先心病患儿的疾病转归和预后可能产生直接影响。更为重要的是,由于资源分布不均衡导致的医疗可及性差异也可能影响患者远期手术预后。我国许多先心病患儿来自农村家庭,家庭经济地位处于劣势的患儿即使接受相同的外科手术,其死亡风险或非计划再入院的风险均显著增加[11],且在身体活动、人际交往、学业成绩等生活质量相关的评价维度方面表现更差[16]。因此,应当思考如何改进目前的先心病诊疗体系,以提高医疗可及性,全方位改善患者的远期预后。
2. 思考与建议:先心病外科区域化诊疗体系的建立
先心病外科具有技术要求高、患者管理复杂/精细等特点,需多学科团队参与诊治。研究表明,先心病外科的医疗质量与医院手术量密切相关。美国胸外科医师学会先心病外科数据库的分析显示,对于复杂先心病,年手术量>350例的心脏中心的死亡率和并发症发生率显著低于年手术量<150例的心脏中心; 而对于简单先心病手术,大中心和小中心的表现则较为接近[17]。来自欧洲心胸外科协会先心病外科数据库的研究显示,手术量较大中心的病例复杂程度和手术难度更高,整体表现优于手术量较小的中心[18]。在美国,1岁以内先心病外科手术的地域分布与先心病患病情况分布有所不同[19],说明美国先心病的治疗存在地域差异。在此背景下,2020年美国先心病外科专家发文倡议,先心病外科应当实现区域化治疗,以进一步改善美国先心病人群的整体预后[20]。该策略的核心是设置年手术量300例为最低标准,根据各中心目前情况进行资源重组并裁减年手术量不达标的先心病外科项目。实行该策略后,虽然美国开展先心病外科手术的医院减少了一半以上,但每年可减少116例先心病相关死亡,且患者的平均就医路程仅增加约50 km[20]。因此,先心病外科区域化治疗体系的建立需以患者利益为中心,在保证患者获得最佳医疗服务的同时,还要考虑患者就医路程和时间成本问题,减少出院后的长期经济负担,进而降低治疗中断、患者失访等风险。
建立我国先心病外科区域化治疗体系需深入分析治疗现状,然而目前关于现状的研究仍处于空白阶段。我国先心病外科手术量超过8万例/年,但遗憾的是,这部分临床资源尚未被充分整合和利用。最近,由中国医学科学院阜外医院牵头建设的中国首个先心病外科国家数据库即将投入使用,未来有望为深入了解我国先心病外科的病种分布、手术难度、手术预后等提供更全面的信息。在此基础上,我们不仅可以制定开展先心病外科手术和治疗的规范及标准,且可进一步结合我国的人口、交通、地域等因素,分析心脏中心分布、服务人群以及患者就医路程和时间成本等问题,从而为制定符合我国国情的外科区域化治疗体系提供依据。
3. 小结
先心病患者需要终生管理的理念已成为国际共识,为适应这一变化,我国先心病诊疗体系需要进行改革,逐步实现外科区域化治疗,为提高广大先心病患者的医疗可及性,进一步改善我国先心病人群的长期预后提供坚实基础。
作者贡献:李艺负责查阅文献、撰写论文初稿;刘子嘉负责文章构思和修订论文;拉巴次仁提出修改意见;申乐参与论文修订。利益冲突:无 -
[1] Ljungqvist O, Scott M, Fearon KC. Enhanced recovery after surgery a review[J]. JAMA Surgery, 2017, 152: 292-298. DOI: 10.1001/jamasurg.2016.4952
[2] Gustafsson UO, Scott MJ, Hubner M, et al. Guidelines for Perioperative Care in Elective Colorectal Surgery: Enhanced Recovery After Surgery (ERAS®) Society Recommen-dations: 2018[J]. World J Surg, 2019, 43: 659-695. DOI: 10.1007/s00268-018-4844-y
[3] Batchelor TJP, Rasburn NJ, Abdelnour-Berchtold E, et al. Guidelines for enhanced recovery after lung surgery: Recommendations of the Enhanced Recovery after Surgery (ERAS®) Society and the European Society of Thoracic Surgeons (ESTS)[J]. Eur J Cardiothorac Surg, 2019, 55: 91-115. DOI: 10.1093/ejcts/ezy301
[4] Wainwright TW, Gill M, Mcdonald DA, et al. Consensus statement for perioperative care in total hip replacement and total knee replacement surgery: Enhanced Recovery After Surgery (ERAS®) Society recommendations[J]. Acta Orthop, 2020, 91: 3-19. DOI: 10.1080/17453674.2019.1683790
[5] Nelson G, Bakkum-Gamez J, Kalogera E, et al. Guidelines for perioperative care in gynecologic/oncology: Enhanced Recovery after Surgery (ERAS) Society recommendations-2019 update[J]. Int J Gynecol Cancer, 2019, 29: 651-668. DOI: 10.1136/ijgc-2019-000356
[6] Low DE, Allum W, De Manzoni G, et al. Guidelines for Perioperative Care in Esophagectomy: Enhanced Recovery After Surgery (ERAS®) Society Recommendations[J]. World J Surg, 2019, 43: 299-330. DOI: 10.1007/s00268-018-4786-4
[7] Gunter A, Ruskin KJ. Intraoperative neurophysiologic monitoring: Utility and anesthetic implications[J]. Curr Opin Anaesthesiol, 2016, 29: 539-543. DOI: 10.1097/ACO.0000000000000374
[8] Vadivelu N, Kai AM, Tran D, et al. Options for periopera-tive pain management in neurosurgery[J]. J Pain Res, 2016, 9: 37-47. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4755467/pdf/jpr-9-037.pdf
[9] Berger M, Schenning KJ, Brown CH, et al. Best Practices for Postoperative Brain Health: Recommendations From the Fifth International Perioperative Neurotoxicity Working Group. Best Practices for Postoperative Brain Health: Recommendations From the Fifth International Perioperative Neurotoxicity Working Group[J]. Anesth Analg, 2018, 127: 1406-1413. DOI: 10.1213/ANE.0000000000003841
[10] Sheshadri V, Venkatraghavan L, Manninen P, et al. Anesthesia for Same Day Discharge after Craniotomy: Review of a Single Center Experience[J]. J Neurosurg Anesthesiol, 2018, 30: 299-304. DOI: 10.1097/ANA.0000000000000483
[11] Sewell D, Smith M. Awake craniotomy: anesthetic considerations based on outcome evidence[J]. Curr Opin Anaesthesiol, 2019, 32: 546-552. DOI: 10.1097/ACO.0000000000000750
[12] Batoz H, Verdonck O, Pellerin C, et al. The analgesic properties of scalp infiltrations with ropivacaine after intracranial tumoral resection[J]. Anesth Analg, 2009, 109: 240-244. DOI: 10.1213/ane.0b013e3181a4928d
[13] Song J, Li L, Yu P, et al. Preemptive scalp infiltration with 0.5% ropivacaine and 1% lidocaine reduces postoperative pain after craniotomy[J]. Acta Neurochir (Wien), 2015, 157: 993-998. DOI: 10.1007/s00701-015-2394-8
[14] Jia Y, Zhao C, Ren H, et al. Pre-emptive scalp infiltration with dexamethasone plus ropivacaine for postoperative pain after craniotomy: a protocol for a prospective, randomized controlled trial[J]. J Pain Res, 2019, 12: 1709-1719. DOI: 10.2147/JPR.S190679
[15] Nguyen A, Girard F, Boudreault D, et al. Scalp nerve blocks decrease the severity of pain after craniotomy[J]. Anesth Analg, 2001, 93: 1272-1276. DOI: 10.1097/00000539-200111000-00048
[16] Chaki T, Sugino S, Janicki PK, et al. Efficacy and safety of a lidocaine and ropivacaine mixture for scalp nerve block and local infiltration anesthesia in patients undergoing awake craniotomy[J]. J Neurosurg Anesthesiol, 2016, 28: 1-5. DOI: 10.1097/ANA.0000000000000149
[17] Mohamed AA, Radwan TA, Mohamed MM, et al. Safety and efficacy of addition of hyaluronidase to a mixture of lidocaine and bupivacaine in scalp nerves block in elective craniotomy operations; Comparative study[J]. BMC Anesthesiol, 2018, 18: 129. DOI: 10.1186/s12871-018-0590-9
[18] Vallapu S, Panda NB, Samagh N, et al. Efficacy of dexmedetomidine as an adjuvant to local anesthetic agent in scalp block and scalp infiltration to control postcraniotomy pain: A double-blind randomized trial[J]. J Neurosci Rural Pract, 2018, 9: 73-79. DOI: 10.4103/jnrp.jnrp_310_17
[19] Akcil EF, Dilmen OK, Vehid H, et al. Which one is more effective for analgesia in infratentorial craniotomy? The scalp block or local anesthetic infiltration[J]. Clin Neurol Neurosurg, 2017, 154: 98-103. DOI: 10.1016/j.clineuro.2017.01.018
[20] Theerth KA, Sriganesh K, Reddy KM, et al. Analgesia Nociception Index-guided intraoperative fentanyl consumption and postoperative analgesia in patients receiving scalp block versus incision-site infiltration for craniotomy[J]. Minerva Anestesiol, 2018, 84: 1361-1368.
[21] Yang X, Ma J, Li K, et al. A comparison of effects of scalp nerve block and local anesthetic infiltration on inflammatory response, hemodynamic response, and postoperative pain in patients undergoing craniotomy for cerebral aneurysms: A randomized controlled trial[J]. BMC Anesthesiol, 2019, 19: 91. DOI: 10.1186/s12871-019-0760-4
[22] Iturri F, Valencia L, Honorato C, et al. Narrative review of acute post-craniotomy pain. Concept and strategies for prevention and treatment of pain[J]. Rev Esp Anestesiol Reanim (Engl Ed), 2020, 67: 90-98. DOI: 10.1016/j.redar.2019.09.002
[23] Ban VS, Bhoja R, Mcdonagh DL. Multimodal analgesia for craniotomy[J]. Curr Opin Anaesthesiol, 2019, 32: 592-599. DOI: 10.1097/ACO.0000000000000766
[24] Tsaousi GG, Logan SW, Bilotta F. Postoperative Pain Control Following Craniotomy: A Systematic Review of Recent Clinical Literature[J]. Pain Pract, 2017, 17: 968-981. DOI: 10.1111/papr.12548
[25] Akcil EF, Korkmaz Dilmen O, Ertem Vehid H, et al. The role of "Integrated Pulmonary Index" monitoring during morphine-based intravenous patient-controlled analgesia administration following supratentorial craniotomies: a prospective, randomized, double-blind controlled study[J]. Curr Med Res Opin, 2018, 34: 2009-2014. DOI: 10.1080/03007995.2018.1501352
[26] Greenberg S, Murphy GS, Avram MJ, et al. Postoperative Intravenous Acetaminophen for Craniotomy Patients: A Randomized Controlled Trial[J]. World Neurosurg, 2018, 109: e554-e562. DOI: 10.1016/j.wneu.2017.10.021
[27] Artime CA, Aijazi H, Zhang H, et al. Scheduled Intrave-nous Acetaminophen Improves Patient Satisfaction with Postcraniotomy Pain Management: A Prospective, Randomized, Placebo-controlled, Double-blind Study[J]. J Neurosurg Anesthesiol, 2018, 30: 231-236. DOI: 10.1097/ANA.0000000000000461
[28] Türe H, Sayin M, Karlikaya G, et al. The analgesic effect of gabapentin as a prophylactic anticonvulsant drug on postcraniotomy pain: A prospective randomized study[J]. Anesth Analg, 2009, 109: 1625-1631. DOI: 10.1213/ane.0b013e3181b0f18b
[29] Zeng M, Dong J, Lin N, et al. Preoperative Gabapentin Administration Improves Acute Postoperative Analgesia in Patients Undergoing Craniotomy: A Randomized Controlled Trial[J]. J Neurosurg Anesthesiol, 2019, 31: 392-398. DOI: 10.1097/ANA.0000000000000533
[30] Shimony N, Amit U, Minz B, et al. Perioperative pregabalin for reducing pain, analgesic consumption, and anxiety and enhancing sleep quality in elective neurosurgical patients: A prospective, randomized, double-blind, and controlled clinical study[J]. J Neurosurg, 2016, 125: 1513-1522. DOI: 10.3171/2015.10.JNS151516
[31] Vacas S, Van de Wiele B. Designing a pain management protocol for craniotomy: A narrative review and consideration of promising practices[J]. Surg Neurol Int, 2017, 8: 291. DOI: 10.4103/sni.sni_301_17
[32] Wang L, Shen J, Ge L, et al. Dexmedetomidine for craniotomy under general anesthesia: A systematic review and meta-analysis of randomized clinical trials[J]. J Clin Anest, 2019, 54: 114-125. DOI: 10.1016/j.jclinane.2018.11.001
[33] Burkhardt T, Czorlich P, Mende KC, et al. Postoperative Nausea and Vomiting Following Craniotomy: Risk Factors and Complications in Context of Perioperative High-dose Dexamethasone Application[J]. J Neurol Surg A Cent Eur Neurosurg, 2019, 80: 381-386. DOI: 10.1055/s-0039-1685194
[34] Zhao C, Jia Y, Jia Z, et al. Pre-emptive scalp infiltration with ropivacaine plus methylprednisolone versus ropivacaine alone for relief of postoperative pain after craniotomy in children (RP/MP vs RP): a study protocol for a randomised controlled trial[J]. BMJ Open, 2019, 9: e027864. DOI: 10.1136/bmjopen-2018-027864
[35] Seo H, Kim E, Jung H, et al. A prospective randomized trial of the optimal dose of mannitol for intraoperative brain relaxation in patients undergoing craniotomy for supraten-torial brain tumor resection[J]. J Neurosurg, 2017, 126: 1839-1846.
[36] O'Gara B, Talmor D. Perioperative lung protective ventilation[J]. BMJ, 2018, 362: k3030.
[37] Güldner A, Kiss T, Serpa Neto A, et al. Intraoperative protective mechanical ventilation for prevention of postoperative pulmonary complications: a comprehensive review of the role of tidal volume, positive end-expiratory pressure, and lung recruitment maneuvers[J]. Anesthesiology, 2015, 123: 692-713. DOI: 10.1097/ALN.0000000000000754
[38] De Jong MAC, Ladha KS, Vidal Melo MF, et al. Differential Effects of Intraoperative Positive End-expiratory Pressure (PEEP) on Respiratory Outcome in Major Abdominal Surgery Versus Craniotomy[J]. Ann Surg, 2016, 264: 362-369. DOI: 10.1097/SLA.0000000000001499
[39] Billeter AT, Hohmann SF, Druen D, et al. Unintentional perioperative hypothermia is associated with severe complications and high mortality in elective operations[J]. Surgery, 2014, 156: 1245-1252. DOI: 10.1016/j.surg.2014.04.024
[40] Shaw CA, Steelman VM, DeBerg J, et al. Effectiveness of active and passive warming for the prevention of inadvertent hypothermia in patients receiving neuraxial anesthesia: A systematic review and meta-analysis of randomized controlled trials[J]. J Clin Anesth, 2017, 38: 93-104. DOI: 10.1016/j.jclinane.2017.01.005
[41] Hagan KB, Bhavsar S, Raza SM, et al. Enhanced recovery after surgery for oncological craniotomies[J]. J Clin Neurosci, 2016, 24: 10-16. DOI: 10.1016/j.jocn.2015.08.013
[42] Kamata K, Morioka N, Maruyama T, et al. The effect of single low-dose dexamethasone on vomiting during awake craniotomy[J]. J Anesth, 2016, 30: 941-948. DOI: 10.1007/s00540-016-2243-9
[43] Daniel R, Villuri S, Furlong K. Management of hypergly-cemia in the neurosurgery patient[J]. Hosp Pract (1995), 2017, 45: 150-157. DOI: 10.1080/21548331.2017.1370968
[44] Gruenbaum SE, Toscani L, Fomberstein KM, et al. Severe Intraoperative Hyperglycemia Is Independently Associated With Postoperative Composite Infection After Craniotomy: An Observational Study[J]. Anesth Analg, 2017, 125: 556-561. DOI: 10.1213/ANE.0000000000001946
计量
- 文章访问数: 515
- HTML全文浏览量: 159
- PDF下载量: 55