早/中孕期孕妇肠道菌群差异及其与妊娠期糖尿病的关系:前瞻性队列研究

王佩, 马良坤, 刘俊涛

王佩, 马良坤, 刘俊涛. 早/中孕期孕妇肠道菌群差异及其与妊娠期糖尿病的关系:前瞻性队列研究[J]. 协和医学杂志, 2021, 12(5): 721-728. DOI: 10.12290/xhyxzz.20200122
引用本文: 王佩, 马良坤, 刘俊涛. 早/中孕期孕妇肠道菌群差异及其与妊娠期糖尿病的关系:前瞻性队列研究[J]. 协和医学杂志, 2021, 12(5): 721-728. DOI: 10.12290/xhyxzz.20200122
WANG Pei, MA Liangkun, LIU Juntao. Difference in Gut Microbiota between the First and the Second Trimester of Pregnancy and the Association of Gut Microbiota with Gestational Diabetes Mellitus: A Prospective Cohort Study[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(5): 721-728. DOI: 10.12290/xhyxzz.20200122
Citation: WANG Pei, MA Liangkun, LIU Juntao. Difference in Gut Microbiota between the First and the Second Trimester of Pregnancy and the Association of Gut Microbiota with Gestational Diabetes Mellitus: A Prospective Cohort Study[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(5): 721-728. DOI: 10.12290/xhyxzz.20200122

早/中孕期孕妇肠道菌群差异及其与妊娠期糖尿病的关系:前瞻性队列研究

基金项目: 

中国医学科学院医学与健康科技创新工程 2016-I2M-1-008

详细信息
    通讯作者:

    刘俊涛  电话:010-69156230,E-mail: liujt@pumch.cn

  • 中图分类号: R714.256

Difference in Gut Microbiota between the First and the Second Trimester of Pregnancy and the Association of Gut Microbiota with Gestational Diabetes Mellitus: A Prospective Cohort Study

Funds: 

CAMS Innovation Fund for Medical Sciences 2016-I2M-1-008

More Information
    Corresponding author:

    LIU Juntao  Tel: 86-10-69156230, E-mail: liujt@pumch.cn

  • 摘要:
      目的  探讨早/中孕期妇女的肠道菌群物种及功能特点,并分析其与妊娠期糖尿病(gestational diabetes mellitus, GDM)的关系。
      方法  前瞻性收集并分析2017年5月至12月北京协和医院产科招募的早孕期孕妇的临床资料。依据孕24~28周75 g口服葡萄糖耐量试验(oral glucose tolerance test, OGTT)结果分为GDM组(研究组)和非GDM组(对照组)。分别于早孕期和中孕期收集两组孕妇粪便标本,对肠道菌群的16S rRNA V4可变区进行DNA测序及生物信息学分析。采用多因素Logistic回归分析探讨肠道菌群Alpha多样性及菌群相对丰度与GDM的关系。
      结果  共145例符合纳入和排除标准的孕妇入选本研究。其中研究组34例、对照组111例。Alpha多样性分析显示,研究组早孕期Shannon指数和Simpson指数低于对照组(P均<0.05)。LEfSe分析显示,早孕期和中孕期,多个物种的相对丰度在两组间差异具有统计学意义(P均<0.05)。多因素Logistic回归分析显示,早孕期Shannon指数≤6.51(OR=3.15, 95% CI: 1.32~7.52)、Simpson指数≤0.96(OR=2.54,95% CI: 1.09~5.89)、拟普雷沃菌属(Alloprevotella)相对丰度≤0.004(OR=2.65, 95% CI: 1.09~6.44)、毛螺菌属(Lachnospira)相对丰度≤0.0107(OR=3.17, 95% CI: 1.33~7.55)是发生GDM的危险因素。肠道菌群功能预测比较显示, 早孕期时两组差异较少;中孕期时与能量代谢、糖代谢、氨基酸代谢和脂多糖(lipopolysaccharide, LPS)合成相关的通路在研究组显著富集。
      结论  与健康孕妇相比,中孕期GDM患者肠道菌群的功能特点为LPS合成、能量代谢、糖代谢和氨基酸代谢相关通路显著富集; 早孕期肠道菌群物种多样性降低及某些菌属的丰度降低是发生GDM的危险因素。
    Abstract:
      Objective  To characterize the characteristics of gut microbiota and its function in the first (T1) to second trimester(T2) of pregnancy and to evaluate its association with gestational mellitus diabetes (GDM).
      Methods  A prospective cohort study was conducted in Peking Union Medical College Hospital from May to December 2017. The pregnancies were divided into GDM group and non-GDM group (control group) according to the Results of 75 g oral glucose tolerance test at 24 to 48 weeks of gestation. Stool samples of all participants were collected in the first and the second trimester. The V4 region of the 16S rRNA gene was sequenced and analyzed. Multivariate Logistic regression analysis was used to investigate the relationship between Alpha diversity, relative abundance of intestinal flora and GDM.
      Results  A total of 145 pregnancies, of whom 34 diagnosed with GDM (GDM group) and 111 healthy (control group) were analyzed. The Alpha diversity of the GDM group (Shannon index and Simpson index) was significantly lower than that of the control group (P < 0.05). LEfSe analysis revealed that the relative abundance of several genera was different between the 2 groups in T1 or T2. Multivariate Logistic analysis showed that Shannon index ≤6.51 (OR=3.15, 95% CI: 1.32-7.52), Simpson index ≤0.96 (OR=2.54, 95% CI: 1.09-5.89), the lower relative abundance of Alloprevotella(OR=2.65, 95% CI: 1.09-6.44) and Lachnospira(OR=3.17, 95% CI: 1.33-7.55) in the first trimester were risk factors for GDM. The pathways of LPS biosynthesis, energy metabolism, glucose metabolism and amino acid metabolism of gut microbiome revealed through the Tax4Fun analysis were significantly enriched in the GDM group in T2.
      Conclusions  Compared with healthy controls, the functional characteristics of intestinal microflora in GDM patients during the second trimester were significantly enriched in functional pathways related to LPS synthesis, energy metabolism, glucose metabolism and amino acid metabolism. The decreases of the diversity as well as the relative abundance of some genus in the early pregnancy are the risk factors for GDM.
  • 手术是大多数先天性心脏病(下文简称“先心病”)的最终治疗手段。经过近几十年的发展,我国先心病诊疗水平已取得显著进步,外科和介入技术均趋于成熟。2019年发布的《中国心外科手术和体外循环数据白皮书》显示,我国先心病手术量为81 246例,在所有心脏手术类别中占比32%,位居第一[1]。人群死亡率方面,2017年我国先心病标化死亡率为2.63/10万,较1990年下降了50.4%,与北美地区的差距已大幅缩小[2],然而,我国先心病人群的整体预后仍不理想。根据2018年Lancet公布的医疗服务可及性和质量指数(Healthcare Access and Quality Index, HAQ)结果,中国先心病HAQ仅为36分,远低于西方发达国家[3]。此外,由于我国经济发展不均衡、医疗资源分布不均匀,先心病人群死亡率存在巨大的地域差异。2011至2013年,我国农村地区5岁以下儿童先心病死亡率为158.2/10万,是城市地区的2.3倍[4]。因此,笔者认为即使在医疗技术高度发达的今天,我国先心病诊疗体系仍然具有很大的改善空间。

    据统计,目前我国小儿心脏外科注册医师总数仅为350人(以13亿人口计算,约相当于每百万人口0.26人)[5],儿科注册医师总数为118 000人(以2.27亿名0~14岁儿童计算,约相当于每千名儿童0.53人)[6]。而在美国、英国、新加坡,每百万人口小儿心脏外科医师数量均>2人[7],美国每千名17岁以下儿童中,儿科注册医师数量约为1.01人[8],远高于我国。在我国723家提供心脏外科手术的医院中,年手术量不足100例的比率为53%,不足300例的比率则为79%[5]。与此同时,美国36个州共153家医院可提供先心病外科手术; 其中,73%可行高危先心病外科手术,42%的医院年手术量在151例以上[9]。以上数据提示,在先心病外科服务能力供给方面,我国与发达国家仍存在较大差距。

    我国先心病外科医疗资源存在明显的地域分布不均衡问题,具备丰富经验的治疗团队较为稀缺,且多集中于经济发达的东部地区。进一步分析《中国心外科手术和体外循环数据白皮书》发现,北方地区超过50%的先心病外科手术集中于手术量排名前10的医院; 2017年北京地区的先心病外科手术量为367例/100万,远高于陕西(124例/100万)、河南(69例/100万)等其他省份,存在大量京外地区先心病患者进入北京手术治疗的情况。优质医疗资源的集中,有助于提升效率、减少资源浪费; 然而,这往往加剧了资源分布的不均衡,导致医疗可及性进一步下降,具体反映在患者的就医难度方面。如果以就医路程和时间成本进行衡量,我国北方地区所有5岁以下儿童中,仅12.9%居住在通勤时间为半天、距离心脏中心30 km以内的区域; 而在中部和西部地区,70%以上的患者需要通勤180 km以上才能在高水平心脏中心就诊[10]。在美国等发达国家,先心病患者距离最近的心脏中心的中位距离约为32 km,仅25%的患者就医通勤距离在160 km以上[9],就医时间成本明显低于我国。因此,在外科医疗资源地域分布方面,我国与发达国家的差距仍然较大。

    及时的诊断和治疗是决定先心病患者存活和长期预后的关键。对于医疗可及性较差的先心病患儿,如缺乏制度上的弥补措施,可能会耽误最佳治疗时机。研究发现,对于家庭经济状况较差的复杂先心病患儿,其接受手术治疗时的年龄整体大于家庭经济条件较好的患儿[11]。一项来自中国医学科学院阜外医院横跨9年的病例研究显示,525例行全腔静脉肺动脉连接术患儿的中位手术年龄为6岁[12],比美国行同类手术的患儿晚近3年[13],说明我国复杂先心病患者存在普遍的治疗延误问题。治疗时机会影响先心病患儿尤其是低龄患儿的存活。在患有左心发育不全综合征的新生儿中,与距离最近心脏外科手术中心车程<10 min的患儿相比,车程>90 min患儿的死亡率增加108%[14]。一项来自美国的人群研究发现,家庭住址和全美排名前50心脏中心的距离与婴儿先心病死亡率独立相关。在校正年龄、性别、种族等因素后,家庭住址远离心脏中心婴儿的死亡率比接近心脏中心的婴儿人群高28%[15]。以上数据提示,医疗可及性对先心病患儿的疾病转归和预后可能产生直接影响。更为重要的是,由于资源分布不均衡导致的医疗可及性差异也可能影响患者远期手术预后。我国许多先心病患儿来自农村家庭,家庭经济地位处于劣势的患儿即使接受相同的外科手术,其死亡风险或非计划再入院的风险均显著增加[11],且在身体活动、人际交往、学业成绩等生活质量相关的评价维度方面表现更差[16]。因此,应当思考如何改进目前的先心病诊疗体系,以提高医疗可及性,全方位改善患者的远期预后。

    先心病外科具有技术要求高、患者管理复杂/精细等特点,需多学科团队参与诊治。研究表明,先心病外科的医疗质量与医院手术量密切相关。美国胸外科医师学会先心病外科数据库的分析显示,对于复杂先心病,年手术量>350例的心脏中心的死亡率和并发症发生率显著低于年手术量<150例的心脏中心; 而对于简单先心病手术,大中心和小中心的表现则较为接近[17]。来自欧洲心胸外科协会先心病外科数据库的研究显示,手术量较大中心的病例复杂程度和手术难度更高,整体表现优于手术量较小的中心[18]。在美国,1岁以内先心病外科手术的地域分布与先心病患病情况分布有所不同[19],说明美国先心病的治疗存在地域差异。在此背景下,2020年美国先心病外科专家发文倡议,先心病外科应当实现区域化治疗,以进一步改善美国先心病人群的整体预后[20]。该策略的核心是设置年手术量300例为最低标准,根据各中心目前情况进行资源重组并裁减年手术量不达标的先心病外科项目。实行该策略后,虽然美国开展先心病外科手术的医院减少了一半以上,但每年可减少116例先心病相关死亡,且患者的平均就医路程仅增加约50 km[20]。因此,先心病外科区域化治疗体系的建立需以患者利益为中心,在保证患者获得最佳医疗服务的同时,还要考虑患者就医路程和时间成本问题,减少出院后的长期经济负担,进而降低治疗中断、患者失访等风险。

    建立我国先心病外科区域化治疗体系需深入分析治疗现状,然而目前关于现状的研究仍处于空白阶段。我国先心病外科手术量超过8万例/年,但遗憾的是,这部分临床资源尚未被充分整合和利用。最近,由中国医学科学院阜外医院牵头建设的中国首个先心病外科国家数据库即将投入使用,未来有望为深入了解我国先心病外科的病种分布、手术难度、手术预后等提供更全面的信息。在此基础上,我们不仅可以制定开展先心病外科手术和治疗的规范及标准,且可进一步结合我国的人口、交通、地域等因素,分析心脏中心分布、服务人群以及患者就医路程和时间成本等问题,从而为制定符合我国国情的外科区域化治疗体系提供依据。

    先心病患者需要终生管理的理念已成为国际共识,为适应这一变化,我国先心病诊疗体系需要进行改革,逐步实现外科区域化治疗,为提高广大先心病患者的医疗可及性,进一步改善我国先心病人群的长期预后提供坚实基础。

    作者贡献:王佩负责研究设计、实施、数据采集、统计分析、撰写论文;马良坤指导研究设计;刘俊涛参与研究设计和实施、论文修改、经费支持。
    利益冲突:
  • 图  1   两组肠道菌群物种差异的LEfSe分析

    A.早孕期;B.中孕期

    图  2   两组肠道菌群功能通路相对丰度富集分析

    A.早孕期;B.中孕期

    表  1   两组孕妇的临床特征比较

    指标 研究组(n=34) 对照组(n=111) P
    年龄(x±s,岁) 35.5±4.3 32.3±3.9 <0.001
    经产妇[n(%)] 13(38.2) 24(21.6) 0.052
    孕前BMI(x±s,kg/m2) 22.8±3.8 21.9±2.6 0.187
    75 g OGTT(x±s,mmol/L)
        0 h血糖 4.9±0.4 4.5±0.2 <0.001
        1 h血糖 9.2±1.6 7.3±1.3 <0.001
        2 h血糖 8.3±1.3 6.4±0.9 <0.001
    GDM诊断孕周[M(P25, P75),周] 24.9(24.3,25.6) 24.7(24.1,25.4) 0.153
    早孕期留取标本孕周[M(P25, P75),周] 12.6(12.0,13.6) 12.7(12.1,13.4) 0.632
    中孕期留取标本孕周[M(P25, P75),周] 25.5(24.6,26.4) 25.5(24.4,26.7) 0.647
    BMI: 体质量指数;OGTT: 口服葡萄糖耐量试验;GDM: 妊娠期糖尿病
    下载: 导出CSV

    表  2   两组早孕期肠道菌群Alpha多样性比较及多因素Logistic回归分析

    Alpha多样性指数 研究组(n=34) 对照组(n=111) P 多因素Logistic回归分析*
    取值范围 OR(95% CI) P
    Chao1指数[M(P25, P75)] 918.9(749.4, 1450.7) 1082.3(857.1, 2037.1) 0.119 ≤1544.1 1
    >1544.1 0.49(0.19~1.27) 0.144
    Shannon指数(x±s) 6.19±0.93 6.60±0.84 0.019 ≤6.51 3.15(1.32~7.52) 0.009
    >6.51 1
    Simpson指数[M(P25, P75)] 0.96(0.94, 0.97) 0.97(0.95, 0.98) 0.004 ≤0.96 2.54(1.09~5.89) 0.030
    >0.96 1
    *多因素Logistic回归分析调整因素包括年龄和孕前体质量指数
    下载: 导出CSV

    表  3   早孕期肠道菌群主要物种与GDM关系的多因素Logistic回归分析结果

    菌属 取值范围 多因素Logistic回归分析*
    OR(95% CI) P R2
    拟普雷沃菌属 ≤0.004 2.65(1.09~6.44) 0.032 0.144
    >0.004 1
    毛螺菌属 ≤0.0107 3.17(1.33~7.55) 0.009 0.153
    >0.0107 1
    罗氏菌属 ≤0.0148 1
    >0.0148 2.06(0.83~5.13) 0.121 0.106
    巨单胞菌属 ≤0.001 33 1
    >0.001 33 2.75(0.94~8.04) 0.064 0.089
    GDM:同表 1*表 2
    下载: 导出CSV
  • [1]

    Committee on Practice Bulletins-Obstetrics. ACOG Practice Bulletin No. 190: Gestational Diabetes Mellitus[J]. Obstet Gynecol, 2018, 131: e49-e64. DOI: 10.1097/AOG.0000000000002501

    [2]

    Gao C, Sun X, Lu L, et al. Prevalence of gestational diabetes mellitus in mainland China: A systematic review and meta-analysis[J]. J Diabetes Investig, 2019, 10: 154-162. DOI: 10.1111/jdi.12854

    [3]

    Johns EC, Denison FC, Norman JE, et al. Gestational Diabetes Mellitus: Mechanisms, Treatment, and Complications[J]. Trends Endocrinol Metab, 2018, 29: 743-754. DOI: 10.1016/j.tem.2018.09.004

    [4]

    Kim C, Newton KM, Knopp RH. Gestational diabetes and the incidence of type 2 diabetes: a systematic review[J]. Diabetes Care, 2002, 25: 1862-1868. DOI: 10.2337/diacare.25.10.1862

    [5]

    Boney CM, Verma A, Tucker R, et al. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus[J]. Pediatrics, 2005, 115: e290-e296. DOI: 10.1542/peds.2004-1808

    [6]

    Plows JF, Stanley JL, Baker PN, et al. The Pathophysiology of Gestational Diabetes Mellitus[J]. Int J Mol Sci, 2018, 19: 3342. DOI: 10.3390/ijms19113342

    [7]

    Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes[J]. Nature, 2012, 490: 55-60. DOI: 10.1038/nature11450

    [8]

    Cani PD, Osto M, Geurts L, et al. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity[J]. Gut Microbes, 2012, 3: 279-288. DOI: 10.4161/gmic.19625

    [9] 焦禹豪, 张奉春. 肠道菌群与人体免疫系统相关性研究方兴未艾[J]. 协和医学杂志, 2019, 10: 193-196. DOI: 10.3969/j.issn.1674-9081.2019.03.001

    Jiao YH, Zhang FC. New Insights into Research on the Role of Gut Microbiota in Human Immune System[J]. Xiehe Yixue Zazhi, 2019, 10: 193-196. DOI: 10.3969/j.issn.1674-9081.2019.03.001

    [10]

    Crusell MKW, Hansen TH, Nielsen T, et al. Gestational diabetes is associated with change in the gut microbiota composition in third trimester of pregnancy and postpartum[J]. Microbiome, 2018, 6: 89. DOI: 10.1186/s40168-018-0472-x

    [11]

    Ferrocino I, Ponzo V, Gambino R, et al. Changes in the gut microbiota composition during pregnancy in patients with gestational diabetes mellitus (GDM)[J]. Sci Rep, 2018, 8: 12216. DOI: 10.1038/s41598-018-30735-9

    [12] 刘誉, 马京梅, 秦胜堂, 等. 妊娠期糖尿病患者治疗前后肠道菌群变化及其与血糖的相关性[J]. 中华围产医学杂志, 2020, 23: 98-104. DOI: 10.3760/cma.j.issn.1007-9408.2020.02.005

    Liu Y, Ma JM, Qin ST, et al. Different characteristics of gut microbiota before and after management of women with gestational diabetes mellitus and the association with blood glucose level[J]. Zhonghua Weichan Yixue Zazhi, 2020, 23: 98-104. DOI: 10.3760/cma.j.issn.1007-9408.2020.02.005

    [13]

    Kuang YS, Lu JH, Li SH, et al. Connections between the human gut microbiome and gestational diabetes mellitus[J]. GigaScience, 2017, 6: 1-12. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5597849/pdf/gix058.pdf

    [14] 中华医学会妇产科学分会产科学组, 中华医学会围产医学分会妊娠合并糖尿病协作组. 妊娠合并糖尿病诊治指南(2014)[J]. 中华妇产科杂志, 2014, 49: 561-569. https://www.cnki.com.cn/Article/CJFDTOTAL-TNBL201411002.htm

    Obstetrics group of Obstetrics and Gynecology branch of Chinese Medical Association, Chinese Medical Association perinatal medicine branch, gestational diabetes cooperation group. Guidelines for the diagnosis and treatment of gestational diabetes mellitus (2014)[J]. Zhonghua Fuchanke Zazhi, 2014, 49: 56-569. https://www.cnki.com.cn/Article/CJFDTOTAL-TNBL201411002.htm

    [15]

    Chen CC, Wu WK, Chang CM, et al. Comparison of DNA stabilizers and storage conditions on preserving fecal microbiota profiles[J]. J Formos Med Assoc, 2020, 119: 1791-1798. DOI: 10.1016/j.jfma.2020.01.013

    [16]

    Aβhauer KP, Wemheuer B, Daniel R, et al. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data[J]. Bioinformatics, 2015, 31: 2882-2884. DOI: 10.1093/bioinformatics/btv287

    [17]

    Koren O, Goodrich JK, Cullender TC, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy[J]. Cell, 2012, 150: 470-480. DOI: 10.1016/j.cell.2012.07.008

    [18]

    Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome[J]. Genome Med, 2016, 8: 51. DOI: 10.1186/s13073-016-0307-y

    [19]

    Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers[J]. Nature, 2013, 500: 541-546. DOI: 10.1038/nature12506

    [20]

    Ma S, You Y, Huang L, et al. Alterations in Gut Microbiota of Gestational Diabetes Patients During the First Trimester of Pregnancy[J]. Front Cell Infect Microbiol, 2020, 10: 58. DOI: 10.3389/fcimb.2020.00058

    [21]

    DiGiulio DB, Callahan BJ, McMurdie PJ, et al. Temporal and spatial variation of the human microbiota during pregnancy[J]. Proc Natl Acad Sci U S A, 2015, 112: 11060-11065. DOI: 10.1073/pnas.1502875112

    [22]

    Taddei CR, Cortez RV, Mattar R, et al. Microbiome in normal and pathological pregnancies: A literature overview[J]. Am J Reprod Immunol, 2018, 80: e12993. DOI: 10.1111/aji.12993

    [23]

    Fugmann M, Breier M, Rottenkolber M, et al. The stool microbiota of insulin resistant women with recent gestational diabetes, a high risk group for type 2 diabetes[J]. Sci Rep, 2015, 5: 13212. DOI: 10.1038/srep13212

    [24]

    Liu Z, Li J, Liu H, et al. The intestinal microbiota associated with cardiac valve calcification differs from that of coronary artery disease[J]. Atherosclerosis, 2019, 284: 121-128. DOI: 10.1016/j.atherosclerosis.2018.11.038

    [25]

    Kong C, Gao R, Yan X, et al. Probiotics improve gut microbiota dysbiosis in obese mice fed a high-fat or high-sucrose diet[J]. Nutrition, 2019, 60: 175-184. DOI: 10.1016/j.nut.2018.10.002

    [26]

    Kelly TN, Bazzano LA, Ajami NJ, et al. Gut Microbiome Associates With Lifetime Cardiovascular Disease Risk Profile Among Bogalusa Heart Study Participants[J]. Circ Res, 2016, 119: 956-964. DOI: 10.1161/CIRCRESAHA.116.309219

    [27]

    Bryant MP, Small N. Characteristics of two new genera of anaerobic curved rods isolated from the rumen of cattle[J]. J Bacteriol, 1956, 72: 22-26. DOI: 10.1128/jb.72.1.22-26.1956

    [28]

    Zhang Q, Xiao X, Li M, et al. Vildagliptin increases butyrate-producing bacteria in the gut of diabetic rats[J]. PLoS One, 2017, 12: e0184735. DOI: 10.1371/journal.pone.0184735

    [29]

    Leonel AJ, Alvarez-Leite JI. Butyrate: implications for intestinal function[J]. Curr Opin Clin Nutr Metab Care, 2012, 15: 474-479. DOI: 10.1097/MCO.0b013e32835665fa

    [30]

    Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxe-mia initiates obesity and insulin resistance[J]. Diabetes, 2007, 56: 1761-1772. DOI: 10.2337/db06-1491

    [31]

    Ploger S, Stumpff F, Penner GB, et al. Microbial butyrate and its role for barrier function in the gastrointestinal tract[J]. Ann N Y Acad Sci, 2012, 1258: 52-59. DOI: 10.1111/j.1749-6632.2012.06553.x

    [32]

    Zheng W, Xu Q, Huang W, et al. Gestational Diabetes Mellitus Is Associated with Reduced Dynamics of Gut Microbiota during the First Half of Pregnancy[J]. mSystems, 2020, 5: e00109-e00120. http://www.researchgate.net/publication/340148277_Gestational_Diabetes_Mellitus_Is_Associated_with_Reduced_Dynamics_of_Gut_Microbiota_during_the_First_Half_of_Pregnancy/download?ivk_sa=1024320u

    [33]

    Callaway LK, McIntyre HD, Barrett HL, et al. Probiotics for the Prevention of Gestational Diabetes Mellitus in Overweight and Obese Women: Findings From the SPRING Double-Blind Randomized Controlled Trial[J]. Diabetes Care, 2019, 42: 364-371. http://www.researchgate.net/publication/330498522_Probiotics_for_the_Prevention_of_Gestational_Diabetes_Mellitus_in_Overweight_and_Obese_Women_Findings_From_the_SPRING_Double-Blind_Randomized_Controlled_Trial

    [34]

    Zhang J, Ma S, Wu S, et al. Effects of Probiotic Supplement in Pregnant Women with Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Trials[J]. J Diabetes Res, 2019, 2019: 5364730. http://www.ncbi.nlm.nih.gov/pubmed/31583250

图(2)  /  表(3)
计量
  • 文章访问数:  702
  • HTML全文浏览量:  139
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-05
  • 录用日期:  2020-06-10
  • 网络出版日期:  2021-06-07
  • 刊出日期:  2021-09-29

目录

/

返回文章
返回
x 关闭 永久关闭