丙酮酸激酶M2在胃癌中的作用

高洋, 孙昭, 白春梅

高洋, 孙昭, 白春梅. 丙酮酸激酶M2在胃癌中的作用[J]. 协和医学杂志, 2021, 12(2): 227-231. DOI: 10.12290/xhyxzz.20190274
引用本文: 高洋, 孙昭, 白春梅. 丙酮酸激酶M2在胃癌中的作用[J]. 协和医学杂志, 2021, 12(2): 227-231. DOI: 10.12290/xhyxzz.20190274
GAO Yang, SUN Zhao, BAI Chun-mei. The Role of Pyruvate Kinase M2 in Gastric Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(2): 227-231. DOI: 10.12290/xhyxzz.20190274
Citation: GAO Yang, SUN Zhao, BAI Chun-mei. The Role of Pyruvate Kinase M2 in Gastric Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(2): 227-231. DOI: 10.12290/xhyxzz.20190274

丙酮酸激酶M2在胃癌中的作用

详细信息
    通讯作者:

    孙昭  电话:010-69158754, E-mail: jessiesz@126.com

  • 中图分类号: R735.2; R730.2

The Role of Pyruvate Kinase M2 in Gastric Cancer

More Information
    Corresponding author:

    SUN Zhao   Tel: 86-10-69158754, E-mail: jessiesz@126.com

  • 摘要: 胃癌是最常见的恶性肿瘤之一,其发病率与死亡率均呈较高水平。丙酮酸激酶M2(pyruvate kinase M2, PKM2)是糖酵解过程的关键限速酶,在多种肿瘤组织中表达明显升高,目前认为PKM2与肿瘤的发生、发展密切相关。在胃癌中,PKM2通过参与调节糖酵解途径、介导PI3K/Akt/mTOR信号通路活化、调控基因转录与细胞凋亡,进而促进胃癌细胞的增殖、转移,抑制细胞凋亡,最终加速胃癌的发展,本文将对此进行详细综述。
    Abstract: Gastric cancer is one of the most common malignant neoplasms with high morbidity and mortality. Pyruvate kinase M2 (PKM2) is one of the key rate-limiting enzymes in glycolysis. The expression of PKM2 is significantly increased in a variety of tumors. It is currently considered that PKM2 is related to the development of tumors. PKM2 may promote the development of gastric cancer through the regulation of glycolysis, activation of PI3K/Akt/mTOR and inhibition of apoptosis of tumor cells. Literature will be briefly summarized in this review.
  • 胃癌是起源于胃黏膜上皮细胞的恶性肿瘤,好发于东亚、南美、中美洲及东欧地区[1]。2018年全球范围内新增胃癌患者共计约103万,导致超过78万人死亡,使胃癌成为世界上第五大常见癌症及第三大癌症相关死亡原因[1]

    1927年Warburg等[2]和Burk等[3]首次观察到,即使在氧供良好的环境中,肿瘤细胞也会消耗较多葡萄糖并产生大量乳酸,这一过程被称为“有氧糖酵解”或“温伯格效应”。有氧糖酵解过程中的糖酵解中间体可用于合成核苷酸、氨基酸和脂类,同时产生三磷酸腺苷(adenosine triphosphate,ATP),满足肿瘤和增殖细胞对大分子合成及能量的需求[4]。丙酮酸激酶(pyruvate kinase,PK)是糖酵解过程中的关键限速酶,其亚型丙酮酸激酶M2(PKM2)在多种肿瘤组织及细胞系中呈高表达,研究证明PKM2与肿瘤的发生、增殖、迁移等密切相关[5],但对其在胃癌中的作用及机制认识尚不全面,本文就PKM2在胃癌中的作用及可能的调控机制进行综述。

    哺乳动物的PK存在4种亚型,即PKM1、PKM2、PKL和PKR。PKM1主要存在于能量需求较高的组织中,如骨骼肌、心脏、大脑;PKM2主要存在于高增殖细胞和大部分肿瘤细胞内;PKL主要存在于肝脏、肠道内;PKR主要存在于红细胞内[5]。PKM1、PKM2由PKM基因通过选择性剪接产生,PKL、PKR由PKLR基因编码产生[6]。PKM1、PKL、PKR以稳定的四聚体形式存在;而PKM2则以二聚体和四聚体两种形式存在,二者在肿瘤细胞中的比例不固定,取决于不同的致癌蛋白作用[7]。PKM2二聚体对磷酸烯醇丙酮酸(phosphoenolpyruvate,PEP)的Km值高于其四聚体,因此将PEP转化为ATP和丙酮酸时活性较低,故PKM2二聚体更有利于有氧糖酵解,而四聚体则更有利于通过三羧酸循环产生ATP,PKM2二聚体与四聚体之间的动态平衡为增殖细胞调节自身合成及分解代谢创造了条件[7]

    越来越多的证据表明,PKM2可通过调节有氧糖酵解途径促进肿瘤的发展,在肿瘤发生中发挥关键作用[8-10]。作为糖酵解途径的关键限速酶,PKM2在糖酵解过程中将高能磷酸基从PEP转移至二磷酸腺苷(adenosine diphosphate,ADP),产生ATP和丙酮酸,丙酮酸随后被细胞浆中的乳酸脱氢酶还原为乳酸,或通过呼吸链引导产生高产量的ATP[11]。利用shRNA敲降癌细胞株中的PKM2后,可检测到细胞对葡萄糖的摄取及氧耗增加、乳酸生成减少,重新移入PKM2后这些变化可发生逆转,提示了PKM2促进了细胞增殖和异种移植瘤的形成[10],该研究结果表明PKM2的表达对于有氧糖酵解途径是必要的,并且这种代谢表型为肿瘤细胞提供了选择性生长优势。在缺氧条件下,细胞在缺氧诱导因子-1α(hypoxia inducible factor-1 alpha,HIF-1α)和c-Myc的调控下进行糖酵解,PKM2可与HIF-1α、c-Myc相互作用,共同调节糖酵解途径,促进肿瘤的发展[8-9]

    随着对细胞浆内蛋白成分研究的不断深入,PKM2调节细胞浆内信号转导的作用逐渐被认识。磷脂酰肌醇-3-激酶/蛋白激酶B/雷帕霉素靶蛋白[phosphatidylinositol-3-kinase(PI3K)/protein kinase B(Akt)/the mammalian target of Rapamycin(mTOR),PI3K/Akt/mTOR]信号通路在细胞增殖、迁移及代谢过程中发挥重要调控作用,PKM2是该信号通路的关键下游介质,介导信号通路的转导,共同调控多种肿瘤的发生发展[12-13]。瘦素通过上调PKM2可激活PI3K/Akt信号通路,介导乳腺癌上皮间质转化[14]。多数细胞内信号转导介质通过与磷-酪氨酸残基结合,组成特定的蛋白复合物以完成信号传递,PKM2作为磷-酪氨酸结合蛋白,可与成纤维细胞生长因子受体1、A-Raf、BCR-ABL等多种酪氨酸激酶相互作用,参与调节细胞内信号转导[15]。同时,PKM2还可与mRNA结合,介导翻译调控[16]

    PKM2除调节糖酵解途径及细胞内信号转导外,还参与细胞核内的基因转录与细胞凋亡。Yang等[17]首次发现,表皮生长因子受体可诱导PKM2核转位,细胞核内的PKM2与Y333磷酸化的β-连环蛋白结合,使组蛋白H3磷酸化、周期蛋白D表达增加,揭示了PKM2在细胞核内基因转录中的调控作用。Gao等[18]发现细胞核内的PKM2水平与细胞增殖能力呈正相关,并证实PKM2可通过磷酸化靶点STAT3 Y705激活MEK5转录,进而促进肿瘤的增殖等。PKM2可增加转录共激活因子p300的募集,促进HIF-1α的反式激活,在缺氧环境中重新编程癌细胞代谢[19-20]。PKM2还可与八聚体结合转录因子4(octamer-binding transcription factor 4,Oct4)的C-末端结合,增强Oct4介导的基因转录,促进肿瘤干细胞的自我更新与分化[21]。此外,有研究指出PKM2与细胞凋亡相关,PKM2可磷酸化B细胞淋巴瘤-2(B-cell lymphoma-2, Bcl-2)T69,阻止后者与Cul3的E3连接酶结合,进而抑制细胞凋亡[22]

    研究表明,PKM2在多种肿瘤组织中的表达高于正常组织,且其高表达与患者的不良预后相关[23-25],故推测PKM2表达增强在胃癌发展中发挥重要作用。

    为明确PKM2在胃癌中的表达,Shiroki等[7]研究发现PKM2不仅存在于胃癌组织,在正常胃组织及健康志愿者的胃黏膜内也有表达,且PKM2在胃癌患者及健康志愿者胃黏膜内的表达均高于PKM1,但该研究未发现胃癌发生过程中PKM1与PKM2亚型之间发生转换的证据。Wang等[26]亦证实了PKM2在胃癌组织中的表达高于邻近正常胃组织,并对PKM2表达水平与患者预后进行了Kaplan-Meier分析,发现PKM2高表达者的总生存期(overall survival,OS)为23个月,低表达者的OS为43个月,前者3年及5年生存率均低于后者,存在显著统计学差异。该团队进一步分析了PKM2表达与临床特点的相关性,并证实PKM2表达与胃癌淋巴结转移、肿瘤浸润及临床分期呈正相关,而利用shRNA下调PKM2表达后,体外胃癌细胞的增殖和迁移能力明显受到抑制。这些研究发现也得到了其他研究的进一步证实[27-30]。因此,目前认为PKM2可提高胃癌细胞的增殖、转移能力,其在胃癌组织中的高表达与患者的不良预后、临床及病理分期呈正相关。

    目前普遍认为,包括胃癌在内的多种实体瘤存在低氧区。在缺氧环境中,正常细胞可能出现细胞适应,或P53依赖的细胞凋亡,但肿瘤细胞可能由于获得P53或其他基因突变,以及代谢重编程等变化,能够在缺氧条件下生存、增殖[4, 31]。为分析缺氧条件下葡萄糖代谢相关酶在胃癌增殖中的作用,Kitayama等[32]使用4株耐缺氧胃癌细胞株和4株亲本细胞株,通过RT-PCR检测PKM2在内的代谢相关酶的mRNA表达水平,与亲本细胞株相比,耐缺氧肿瘤细胞株中的PKM2 mRNA表达水平明显增高;分别利用siRNA和紫草素下调PKM2表达水平后,所有细胞株内耐缺氧细胞的生长均受到显著抑制。该研究表明PKM2对于肿瘤细胞耐受缺氧可能发挥着至关重要的作用。此外,在缺氧条件下,PKM2还可调节HIF-1α和c-Myc的活性,促进肿瘤的发展[8-9]

    HIF-1α是一种转录因子,可激活编码蛋白质的基因转录,参与一系列肿瘤生物学方面的关键步骤,包括血管生成、代谢及细胞存活、侵袭和转移等[33-34]。PKM2可促进HIF-1α的反式激活,二者共同组成激活正反馈环,参与肿瘤细胞中葡萄糖代谢的重编程[19-20]。Chen等[35]对早期胃癌、晚期胃癌及浅表性胃炎组织中HIF-1α和PKM2表达进行检测,发现HIF-1α在早期及晚期胃癌组织中的表达均高于胃炎组织,但仅在晚期胃癌组织中的表达有显著性差异;随后将HIF-1α过表达质粒转染胃癌细胞株BGC823,发现HIF-1α的过表达增强了BGC823细胞的生存、侵袭和迁移能力;二甲双胍可抑制HIF-1α及PKM2的表达,降低胃癌细胞的能量供应,从而降低其生存与侵袭能力。

    c-Myc是Myc基因家族的重要成员,在肿瘤能量代谢、调节糖酵解过程中发挥关键作用[9]。Gao等[36]利用慢病毒转染胃癌细胞,分析PKM2、c-Myc下调对细胞增殖、凋亡、迁移及生长信号通路的影响,发现敲除胃癌细胞中的c-Myc可抑制其增殖能力和糖酵解水平,与单独敲除PKM2或c-Myc相比,同时敲除PKM2和c-Myc对胃癌细胞的抑制作用更明显,故推测二者可能存在相互作用,共同调节糖酵解途径。

    PKM2作为PI3K/Akt/mTOR信号通路的下游介质,通过介导该信号通路的活化,促进胃癌的进展[13, 37]。Lu等[37]利用特异性PI3K抑制剂LY294002处理胃癌细胞,发现其可抑制胃癌细胞的增殖,降低细胞活性,并显著增加早期凋亡率;分别用不同浓度的LY294002处理胃癌细胞后,发现p-Akt、p-mTOR、HIF-1α、PKM2的表达均下降,且下降程度呈剂量依赖性。因此,推测LY294002可能通过抑制PI3K/Akt/mTOR/PKM2信号通路进而抑制胃癌细胞的增殖及有氧糖酵解途径。Gao等[36]使用雷帕霉素抑制mTOR表达,结果发现STAT3、c-Myc、GLUT-1蛋白的表达水平明显降低,由此推测mTOR/PKM2和STAT3/c-Myc信号通路可相互作用,共同参与调控胃癌细胞的增殖和糖酵解水平,但其具体机制尚待进一步研究证实。

    细胞凋亡在机体发育、代谢调节、维持组织稳态等过程中发挥重要作用,与肿瘤的发生、发展、预后及耐药性密切相关[38-39]。在细胞内水平,细胞凋亡是由抗凋亡蛋白的丢失或促凋亡蛋白的激活引起,Bcl-2蛋白家族在细胞凋亡中的作用尤为关键[38]。Bcl-2家族包括抗凋亡蛋白(如Bcl-2、Bcl-xL、Mcl-1等),可促进细胞的生存;还包括促凋亡蛋白(如Bid、Bim、Bad、Bax、Bak等),可促使细胞死亡[38]

    Kwon等[40]利用GENT数据库检索了188例胃癌患者肿瘤组织PKM2表达情况,发现胃癌细胞中PKM2与Bcl-xL呈显著正相关;利用siRNA敲降Bcl-xL后,观察到胃癌细胞的生长受到显著抑制。故推测PKM2可能为胃癌细胞中Bcl-xL的重要上游调控因子,通过调控Bcl-xL以减少细胞凋亡,从而促进胃癌细胞增殖。

    PKM2是糖酵解过程中的关键限速酶,在肿瘤的发生、发展过程中发挥至关重要作用。在胃癌细胞中,PKM2与HIF-1α、c-Myc相互影响,共同调节糖酵解途径,通过介导PI3K/Akt/mTOR信号通路活化、调控细胞凋亡等促进胃癌细胞的生长、转移,抑制其细胞凋亡,最终促进胃癌的发展。因此,阻断PKM2这一关键限速酶,可能成为未来胃癌治疗研究的新方向。

    作者贡献:高洋负责文献查阅及文章撰写;孙昭、白春梅负责文章修订。
    利益冲突:  无
  • [1]

    Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68: 394-424. DOI: 10.3322/caac.21492

    [2]

    Warburg O, Wind F, Negelein E. The metabolism of tumors in the body[J]. J Gen Physiol, 1927, 8: 519-530. DOI: 10.1085/jgp.8.6.519

    [3]

    Burk D, Schade AL. On respiratory impairment in cancer cells[J]. Science, 1956, 124: 270-272. http://www.cell.com/servlet/linkout?suffix=e_1_5_1_2_150_2&dbid=8&doi=10.1016/j.tem.2013.03.002&key=13351639&cf=

    [4]

    Orang AV, Petersen J, McKinnon RA, et al. Micromanag-ing aerobic respiration and glycolysis in cancer cells[J]. Mol Metab, 2019, 23: 98-126. DOI: 10.1016/j.molmet.2019.01.014

    [5]

    Rihan M, Nalla LV, Dharavath A, et al. Pyruvate kinase m2: A metabolic bug in Re-Wiring the tumor microenvironment[J]. Cancer Microenviron, 2019, 12: 149-167. DOI: 10.1007/s12307-019-00226-0

    [6]

    Dong GC, Mao QX, Xia WJ, et al. PKM2 and cancer: The function of PKM2 beyond glycolysis[J]. Oncol Lett, 2016, 11: 1980-1986. DOI: 10.3892/ol.2016.4168

    [7]

    Shiroki T, Yokoyama M, Tanuma N, et al. Enhanced expression of the M2 isoform of pyruvate kinase is involved in gastric cancer development by regulating cancer-specific metabolism[J]. Cancer Sci, 2017, 108: 931-940. DOI: 10.1111/cas.13211

    [8]

    Hasan D, Gamen E, Abu Tarboush N, et al. PKM2 and HIF-1alpha regulation in prostate cancer cell lines[J]. PLoS One, 2018, 13: e203745. http://www.researchgate.net/publication/327657345_PKM2_and_HIF-1a_regulation_in_prostate_cancer_cell_lines

    [9]

    Méndez-Lucas A, Li XL, Hu JJ, et al. Glucose catabolism in liver tumors induced by c-MYC can be sustained by various PKM1/PKM2 ratios and pyruvate kinase activities[J]. Cancer Res, 2017, 77: 4355-4364. DOI: 10.1158/0008-5472.CAN-17-0498

    [10]

    Christofk HR, Vander Heiden MG, Harris MH, et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth[J]. Nature, 2008, 452: 230-233. DOI: 10.1038/nature06734

    [11]

    Wong N, Ojo D, Yan J, et al. PKM2 contributes to cancer metabolism[J]. Cancer Lett, 2015, 356: 184-191. DOI: 10.1016/j.canlet.2014.01.031

    [12]

    Chen S, Fisher RC, Signs S, et al. Inhibition of PI3K/Akt/mTOR signaling in PI3KR2-overexpressing colon cancer stem cells reduces tumor growth due to apoptosis[J]. Oncotarget, 2016, 8: 50476-50488. http://www.ncbi.nlm.nih.gov/pubmed/27286264

    [13]

    Ying J, Xu Q, Liu BX, et al. The expression of the PI3K/AKT/mTOR pathway in gastric cancer and its role in gastric cancer prognosis[J]. Onco Targets Ther, 2015, 8: 2427-2433. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4562727/

    [14]

    Wei L, Li K, Pang X, et al. Leptin promotes epithelial-mesenchymal transition of breast cancer via the upregulation of pyruvate kinase M2[J]. J Exp Clin Cancer Res, 2016, 35: 166. DOI: 10.1186/s13046-016-0446-4

    [15]

    Hsu MC, Hung WC. Pyruvate kinase M2 fuels multiple aspects of cancer cells: From cellular metabolism, transcriptional regulation to extracellular signaling[J]. Mol Cancer, 2018, 17: 35. DOI: 10.1186/s12943-018-0791-3

    [16]

    Mukherjee J, Ohba S, See WL, et al. PKM2 uses control of HuR localization to regulate p27 and cell cycle progression in human glioblastoma cells[J]. Int J Cancer, 2016, 139: 99-111. DOI: 10.1002/ijc.30041

    [17]

    Yang WW, Xia Y, Ji HT, et al. Nuclear PKM2 regulates beta-catenin transactivation upon EGFR activation[J]. Nature, 2017, 480: 118-122. http://europepmc.org/articles/PMC3235705

    [18]

    Gao XL, Wang HZ, Yang JJ, et al. Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase[J]. Mol Cell, 2012, 45: 598-609. DOI: 10.1016/j.molcel.2012.01.001

    [19]

    Luo WB, Hu HX, Chang R, et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1[J]. Cell, 2011, 145: 732-744. DOI: 10.1016/j.cell.2011.03.054

    [20]

    Luo WB, Semenza GL. Pyruvate kinase M2 regulates glucose metabolism by functioning as a coactivator for hypoxia-inducible factor 1 in cancer cells[J]. Oncotarget, 2011, 2: 551-556. DOI: 10.18632/oncotarget.299

    [21]

    Yang YC, Chien MH, Liu HY, et al. Nuclear translocation of PKM2/AMPK complex sustains cancer stem cell populations under glucose restriction stress[J]. Cancer Lett, 2018, 421: 28-40. DOI: 10.1016/j.canlet.2018.01.075

    [22]

    Liang J, Cao RX, Wang XJ, et al. Mitochondrial PKM2 regulates oxidative stress-induced apoptosis by stabilizing Bcl2[J]. Cell Res, 2017, 27: 329-351. DOI: 10.1038/cr.2016.159

    [23]

    Li J, Yang Z, Zou Q, et al. PKM2 and ACVR 1C are prognostic markers for poor prognosis of gallbladder cancer[J]. Clin Transl Oncol, 2014, 16: 200-207. DOI: 10.1007/s12094-013-1063-8

    [24]

    Zhan C, Shi Y, Lu C, et al. Pyruvate kinase M2 is highly correlated with the differentiation and the prognosis of esophageal squamous cell cancer[J]. Dis Esophagus, 2013, 26: 746-753. http://smartsearch.nstl.gov.cn/paper_detail.html?id=42c237bc7ce4dcbb8fba3c3b0efdf8a8

    [25]

    Feng C, Gao Y, Wang CF, et al. Aberrant overexpression of pyruvate kinase M2 is associated with aggressive tumor features and the BRAF mutation in papillary thyroid cancer[J]. J Clin Endocrinol Metab, 2013, 98: E1524-E1533. DOI: 10.1210/jc.2012-4258

    [26]

    Wang C, Jiang JL, Ji J, et al. PKM2 promotes cell migra-tion and inhibits autophagy by mediating PI3K/AKT activation and contributes to the malignant development of gastric cancer[J]. Sci Rep, 2017, 7: 2886. DOI: 10.1038/s41598-017-03031-1

    [27]

    Li H, Xu HY, Xing R, et al. Pyruvate kinase M2 contri-butes to cell growth in gastric cancer via aerobic glycolysis[J]. Pathol Res Pract, 2019, 215: 152409. DOI: 10.1016/j.prp.2019.04.001

    [28]

    Wu JY, Hu L, Chen MY, et al. Pyruvate kinase M2 overexpression and poor prognosis in solid tumors of digestive system: Evidence from 16 cohort studies[J]. Onco Targets Ther, 2016, 9: 4277-4288. DOI: 10.2147/OTT.S106508

    [29]

    Gao YS, Xu DY, Yu GZ, et al. Overexpression of metabolic markers HK1 and PKM2 contributes to lymphatic metastasis and adverse prognosis in Chinese gastric cancer[J]. Int J Clin Exp Pathol, 2015, 8: 9264-9271. http://old.med.wanfangdata.com.cn/viewHTMLEn/PeriodicalPaper_PM26464675.aspx

    [30]

    Lim JY, Yoon SO, Seol SY, et al. Overexpression of the M2 isoform of pyruvate kinase is an adverse prognostic factor for signet ring cell gastric cancer[J]. World J Gastroenterol, 2012, 18: 4037-4043. DOI: 10.3748/wjg.v18.i30.4037

    [31]

    Kato Y, Yashiro M, Noda S, et al. Establishment and characterization of a new hypoxia-resistant cancer cell line, OCUM-12/Hypo, derived from a scirrhous gastric carcinoma[J]. Br J Cancer, 2010, 102: 898-907. DOI: 10.1038/sj.bjc.6605543

    [32]

    Kitayama K, Yashiro M, Morisaki T, et al. Pyruvate kinase isozyme M2 and glutaminase might be promising molecular targets for the treatment of gastric cancer[J]. Cancer Sci, 2017, 108: 2462-2469. DOI: 10.1111/cas.13421

    [33]

    Semenza GL. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics[J]. Oncogene, 2010, 29: 625-634. DOI: 10.1038/onc.2009.441

    [34]

    Melillo G. Targeting hypoxia cell signaling for cancer therapy[J]. Cancer Metastasis Rev, 2007, 26: 341-352. DOI: 10.1007/s10555-007-9059-x

    [35]

    Chen GX, Feng W, Zhang S, et al. Metformin inhibits gastric cancer via the inhibition of HIF1alpha/PKM2 signal-ing[J]. Am J Cancer Res, 2015, 5: 1423-1434. http://europepmc.org/articles/PMC4473320

    [36]

    Gao SM, Chen M, Wei W, et al. Crosstalk of mTOR/PKM2 and STAT3/c-Myc signaling pathways regulate the energy metabolism and acidic microenvironment of gastric cancer[J]. J Cell Biochem, 2018. doi: 10.1002/jcb.26915. Epub ahead of print.

    [37]

    Lu J, Chen M, Gao SM, et al. LY294002 inhibits the Warburg effect in gastric cancer cells by downregulating pyruvate kinase M2[J]. Oncol Lett, 2018, 15: 4358-4364. http://europepmc.org/abstract/MED/29541204

    [38]

    Wu HL, Medeiros LJ, Young KH. Apoptosis signaling and BCL-2 pathways provide opportunities for novel targeted therapeutic strategies in hematologic malignances[J]. Blood Rev, 2018, 32: 8-28. DOI: 10.1016/j.blre.2017.08.004

    [39]

    Pistritto G, Trisciuoglio D, Ceci C, et al. Apoptosis as anticancer mechanism: Function and dysfunction of its modula-tors and targeted therapeutic strategies[J]. Aging (Albany NY), 2016, 8: 603-619. http://pubmedcentralcanada.ca/pmcc/articles/PMC4925817/

    [40]

    Kwon OH, Kang TW, Kim JH, et al. Pyruvate kinase M2 promotes the growth of gastric cancer cells via regulation of Bcl-xL expression at transcriptional level[J]. Biochem Biophys Res Commun, 2012, 423: 38-44. DOI: 10.1016/j.bbrc.2012.05.063

  • 期刊类型引用(2)

    1. 马香莲,王烈宏. PKM2在子宫内膜浆液性癌中的表达及其与病情进展的相关性. 标记免疫分析与临床. 2022(01): 60-66 . 百度学术
    2. 张家祥,闫曙光,王文霸,赵唯含. 中药调控胃癌有氧糖酵解的研究进展. 中国实验方剂学杂志. 2022(20): 258-266 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  550
  • HTML全文浏览量:  121
  • PDF下载量:  49
  • 被引次数: 5
出版历程
  • 收稿日期:  2019-12-08
  • 录用日期:  2020-08-19
  • 网络出版日期:  2020-12-29
  • 刊出日期:  2021-05-29

目录

/

返回文章
返回
x 关闭 永久关闭