长链非编码RNA与肿瘤干细胞

肖楠, 李占峰, 姚建新, 潘志尧, 姚志峰

肖楠, 李占峰, 姚建新, 潘志尧, 姚志峰. 长链非编码RNA与肿瘤干细胞[J]. 协和医学杂志, 2021, 12(3): 373-379. DOI: 10.12290/xhyxzz.20190231
引用本文: 肖楠, 李占峰, 姚建新, 潘志尧, 姚志峰. 长链非编码RNA与肿瘤干细胞[J]. 协和医学杂志, 2021, 12(3): 373-379. DOI: 10.12290/xhyxzz.20190231
XIAO Nan, LI Zhanfeng, YAO Jianxin, PAN Zhiyao, YAO Zhifeng. Long Non-coding RNA and Cancer Stem Cells[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(3): 373-379. DOI: 10.12290/xhyxzz.20190231
Citation: XIAO Nan, LI Zhanfeng, YAO Jianxin, PAN Zhiyao, YAO Zhifeng. Long Non-coding RNA and Cancer Stem Cells[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(3): 373-379. DOI: 10.12290/xhyxzz.20190231

长链非编码RNA与肿瘤干细胞

详细信息
    通讯作者:

    姚志峰 电话:025-58509711,E-mail:yzf058565@126.com

  • 中图分类号: R73

Long Non-coding RNA and Cancer Stem Cells

More Information
  • 摘要: 肿瘤包含具有干细胞特性的功能细胞亚群,称为肿瘤干细胞(cancer stem cell,CSC),这些细胞亚群在肿瘤的发生和发展中起重要作用。长链非编码RNA(long non-coding RNA,lncRNA)是CSC亚群的关键调节因子,具有诱导CSC自我更新、迁移、侵袭、耐药和分化的重要能力。本文对近年来lncRNA在不同CSC发生、维持和调节中的功能及作用机制进行综述,以期通过lncRNA寻找肿瘤治疗新靶点,以选择性消除CSC,最终改善肿瘤患者的预后。
    Abstract: Tumors contain a functional subpopulation of cells that exhibit characteristics of stem cells. This cell subgroup, named cancer stem cell (CSC), plays important roles in the initiation and progression of cancers. As a key regulator of the CSC subgroup, long non-coding RNA (lncRNA) has the important ability to induce self-renewal, migration, invasion, drug resistance and differentiation of CSC. This review summarizes recent research on the functions and mechanisms of lncRNA in the occurrence, maintenance and regulation of different CSC, with the aim of finding new targets for cancer treatment through lncRNA to selectively eliminate CSC and ultimately improve the prognosis of patients with cancer.
  • 长链非编码RNA(long non-coding RNA,lncRNA) 是指一类长度大于200个核苷酸,且不具有蛋白质编码功能的转录本。其主要由RNA聚合酶Ⅱ或Ⅲ转录,但在其他真核生物中也可通过RNA聚合酶Ⅴ转录[1]。成熟的lncRNA可与多种分子相互作用,形成超分子结构,如RNA/RNA、RNA/DNA、RNA/蛋白质、DNA/RNA/蛋白质或DNA/RNA/RNA复合物[2]。一旦转录,lncRNA可顺式(控制局部基因表达)或反式(控制远端基因表达)起作用,导致组织特异性基因的沉默或激活[3]

    尽管大量研究表明lncRNA在转录、转录后和翻译水平起作用,但大多数lncRNA功能仍然未知。近年来研究发现,细胞质lncRNA在多种分子机制中发挥重要作用,包括mRNA的稳定性和翻译调节、蛋白质修饰、作为微小RNA前体或作为竞争性内源RNA。一般来说,lncRNA被认为是转录的主要调节因子,可重塑染色质,并与阻遏物复合物相互作用以阻断转录起始位点[4]

    一般认为,肿瘤内部含有具有干细胞特征的功能性细胞亚群,这些特殊的细胞成分称为肿瘤干细胞(cancer stem cell,CSC)。CSC的“干性”特性,使得其能够在未分化的状态下自我更新,同时保持分化成多种细胞类型的能力。因此,CSC具有无限增殖能力以及高致瘤性、侵袭性和转移性潜力,且对放、化疗具有抗性[5]。越来越多的研究表明,CSC与肿瘤局部复发或远处转移有关,因此了解CSC的分子调控机制显得尤为重要,以便更有针对性地消灭CSC。

    CSC最初在急性髓细胞性白血病(acute myelogenous leukemia,AML)中被鉴定出[6];随后,在乳腺癌、结/直肠癌、脑胶质瘤、黑色素瘤、胰腺癌、卵巢癌、肺癌、前列腺癌和胃癌等实体瘤[7-8]中均鉴定出了CSC。然而,目前临床上尚不能精确检测肿瘤中CSC的比例,主要通过特定的细胞表面标志物分离CSC[9]。CD44、CD133、OCT-4、Bmi-1、ALDH1、ABCG2和KLF4是常见特异性高表达于细胞表面的CSC标志物。

    众所周知,lncRNA在炎症、肿瘤等病理过程中差异化表达,既往研究大多集中于编码基因在肿瘤发生、发展中的作用。近年来研究表明,lncRNA也参与了肿瘤的发生和进展。例如,在CSC亚群中存在特异性lncRNA的异常调控[10];lncRNA HAND2-AS1可维持非小细胞肺癌细胞的干性[11];lncRNA ZNF281通过调节核因子-κB1信号通路抑制胶质瘤干细胞的自我更新能力[12];lncRNA UCA1通过作为Slug的竞争性内源RNA(competitive endogenous RNA, ceRNA)增强胶质瘤细胞的“干性”[13];lncRNA HAND2-AS1在肝CSC呈高表达,参与了肝CSC自我更新以及肝细胞癌(hepatocellular carcinomas, HCC)的发生;HAND2-AS1将INO80染色质重塑复合物招募至BMPR1A的启动子上,从而诱导其表达,并导致BMP信号的激活[14]。lncRNA的过表达、缺乏或突变均可能对CSC的自我更新能力产生影响,因此lncRNA在CSC调控中发挥重要作用。

    LnchPVT1是一种核lncRNA,在HCC中显著上调,并与乙型肝炎病毒(hepatitis B virus, HBV)感染有关[15]。最近研究发现,LnchPVT1与肝CSC呈正相关。LnchPVT1受转化生长因子-β(transforming growth factor-β, TGF-β)途径调节,其可在HCC组织中被HBV激活[16]。已有研究证明LnchPVT1可在体外和体内增强肝CSC能力,主要通过稳定核仁蛋白NOP2介导HCC细胞获得干细胞样特性[17]

    Linc00617是染色体14相关的长链基因间lncRNA,大小为2937 nt,其在晚期乳腺癌组织及转移淋巴结中呈高表达,并促进乳腺癌细胞的迁移和侵袭。Linc00617与乳腺癌CSC的自我更新及扩增有关。由于CSC的部分富集,Linc00617过表达可增加乳腺癌细胞群的乳腺球形成和致瘤能力。体内试验表明,Linc00617缺乏可能导致转移性结节数量急剧减少。进一步研究Linc00617调控CSC的分子机制发现,Linc00617是一种与Sox2基因启动子结合的核lncRNA,并通过招募核内不均一性核糖核蛋白K激活其转录。研究显示,Linc00617和Sox2的表达水平之间存在正相关。Linc00617可能通过调控Sox2表现致癌活性,而Sox2刺激上皮-间质转化(epithelial-mesenchymal transition,EMT)并增强CSC的自我更新能力[18]

    缺氧诱导因子-2α启动子上游转录物(hypoxia-inducible factor-2α promoter upstream transcript,HIF2PUT) 是一种新型lncRNA,在骨肉瘤和结肠癌干细胞中具有关键调节功能[19-21]。HIF2PUT是位于缺氧诱导因子-2α(hypoxia-inducible factor-2α,HIF-2α) 基因的启动子上游区域的反义lncRNA。HIF2PUT调节其宿主基因HIF-2α在骨和结肠组织中的转录活性。HIF2PUT过表达导致HIF-2α表达升高,而缺乏HIF2PUT则导致骨肉瘤和结肠癌衍生细胞系中HIF-2α表达降低。HIF2PUT和HIF-2α在侵袭性骨肉瘤中通常表达升高,且HIF2PUT的高表达可预测骨肉瘤患者的不良预后[20]。HIF-2α与CSC存在相关性,在CSC特性调节中发挥作用。

    HIF2PUT在骨肉瘤和结肠癌CSC中发挥不同的调控作用。在骨肉瘤中,HIF2PUT充当CSC自我更新的有效抑制剂。研究发现抑制HIF2PUT可增强CSC的增殖、迁移和自我更新,而其过表达可抑制这些特征[21]。相反,在结肠癌中,HIF2PUT表达与具有CSC表型的细胞群的富集相关,而HIF2PUT缺失则损害CSC特性,包括增殖、自我更新、迁移和侵袭。此外,HIF2PUT的抑制导致CSC标志物(Oct4、Sox2或CD44)减少[19]。总之,这些数据表明该lncRNA可能在源自不同组织类型CSC的调节中发挥相反的作用。不同组织谱系中lncRNA的功能表征对组织特异性治疗至关重要。lncRNA与微环境之间的信号传递,例如基质细胞和细胞外组分,可能对肿瘤进展和治疗具有较大影响。

    Hox转录本反义基因间RNA(Hox transcript antisense intergenic RNA,HOTAIR)是一种致癌lncRNA,其在多种肿瘤中的表达存在异常,包括乳腺癌、卵巢癌、结肠癌、胰腺癌和子宫颈癌[22]。该lncRNA能够诱导其靶基因的激活或沉默。HOTAIR可募集MLL1甲基转移酶并诱导赖氨酸4的组蛋白H3三甲基化(histone H3 trimethylation of lysine 4,H3K4me3),从而使染色质松散。HOTAIR还可募集梳抑制复合物2 (polycomb repressive complex 2,PRC2),诱导H3K27me3,并最终引发基因沉默[23]

    研究发现,在源自乳腺癌、口腔癌和结肠癌以及神经胶质瘤的CSC中,HOTAIR表达升高[24-26]。这种lncRNA的表达与干细胞特征的获得有关,导致肿瘤生长和转移潜能增强[24, 27-28]。HOTAIR主要通过以TGF-β依赖的方式触发EMT诱导肿瘤“干性”的产生[24-25]。已经发现HOTAIR的外源性表达导致EMT诱导物Zeb1、SNAIL、TWIST和CTNNA1的上调,并诱导间充质标志物,如Vimentin和纤连蛋白(Fibronectin)的产生。相应的,上皮标志物,如E-cadherin、骨成型蛋白7和人类表皮生长因子受体3也被HOTAIR下调。在EMT期间被HOTAIR下调的基因表现出PRC2占据的增加[25]。由HOTAIR诱导的干细胞特征已通过增加的集落形成、迁移和自我更新能力而得到证实[26]。此外有研究表明,HOTAIR可能通过下调SETD2促进CSC生长[27],还可诱导干细胞标志物(如Sox1、Sox2、Oct4和CD44)的表达[25-26]。HOTAIR可通过减弱miR-34a的功能来调节Sox2表达,与晚期临床肿瘤预后差呈正相关[29]。通过使用抑制CSC增殖、迁移、侵袭和自我更新的HOTAIR抑制剂,可发现lncRNA的治疗价值。因此,HOTAIR可作为延缓肿瘤进展和侵袭/转移的靶点[28, 30]

    Lnc34a是一种新的lncRNA,其与miR-34a编码基因结合并通过将DNA甲基转移酶3a和组蛋白脱乙酰酶1募集至miR-34a启动子以调节其沉默。既往研究表明,miR-34a可能作为Notch和Wnt信号通路的负调节因子,这对CSC的自我更新至关重要[31-32]。研究表明Lnc34a在结肠CSC中高表达,可促进CSC自我更新[33]。Lnc34a是第一个在CSC分裂过程中表现出不对称分布的lncRNA,因此产生具有不同细胞命运的不对称子细胞。Lnc34a通过抑制不对称细胞分裂导致CSC分化,而过表达则通过对称细胞分裂导致CSC增殖,这种与其他lncRNA调节不对称CSC分裂的机制仍需进一步研究。miR-34a-Lnc34a轴的发现让人们认识到lncRNA在该过程中的重要性以及其协调CSC自我更新过程的潜力。

    H19是位于11p15.5区域的印记基因,仅由母本等位基因表达[34],是最早发现与肿瘤相关的lncRNA,其在乳腺癌[35]、前列腺癌[36]和胶质母细胞[37]的干细胞样细胞中过表达。

    在乳腺癌中,H19的异位过表达可显著促进肿瘤细胞迁移、克隆和球形成能力;反之,H19的抑制则会破坏乳腺癌细胞的生长和肿瘤形成能力。H19主要存在于乳腺癌细胞的细胞质中,其与miRNA let-7结合,从而导致let-7靶标Lin28的表达增强。H19也可通过负反馈回路被let-7抑制。值得注意的是,H19与Lin28在原发性乳腺癌中共表达,且二者对于维持乳腺CSC自我更新起关键作用[35]。Lin28还可阻断成熟的let-7产生,从而避免H19的负反馈抑制并逆转H19缺失介导的乳腺CSC特性的抑制[35, 38]。这些结果表明H19/let-7/Lin28形成双负反馈环以促进乳腺CSC的维持。在前列腺癌中,H19上调干细胞标志物,如与Sox2、Oct4、Notch1、Klf4、c-Myc和Abcg2的表达相关[36]。H19还在胶质母细胞瘤的CSC自我更新中发挥作用[37]。研究发现H19表达主要限于CSC部分,外源性表达导致该部分的迁移以及神经球和肿瘤形成能力增强。H19还作为miR-138、miR-200a和miR-141的ceRNA参与CSC的调节[39-41]。值得注意的是,H19可干扰miR-138和miR-200a表达,从而避免抑制Vimentin、Zeb1和Zeb2,并伴随诱导EMT。H19的上调导致EMT涉及多个基因的调节,这可能促进肿瘤干性特征[42]

    HOTTIP从HOXA基因座的5'端转录,并以顺式作用调节HOXA基因的表达。HOTTIP结合接头蛋白WDR5,并将WDR5/MLL复合物靶向HOXA基因座,导致H3K4me3。HOXA成员在干细胞的多能性、分化和自我更新中起重要作用。

    HOTTIP在胰腺导管腺癌(pancreatic ductal adenocarcinoma,PDAC) 中过度表达,并促进其进展、侵袭和耐药。这种lncRNA还可促进EMT并调节胰腺CSC[43]。Fu等[44]发现HOTTIP在胰腺CSC的细胞核中高表达,并通过Wnt /β-连环蛋白(Wnt/β-catenin)途径增强CSC特性。HOTTIP在CSC调节中的作用是基于HOXA9的诱导和随后Wnt途径的激活。HOTTIP/HOXA9/Wnt轴通过控制CSC维持和自我更新以提高CSC活性。基于HOTTIP和HOX9的表达可预测PDAC患者的预后,因此可作为PDAC的潜在治疗靶点和分子标志物[43, 45]

    转移相关的肺腺癌转录物1(metastasis-associated lung adenocarcinoma transcript 1,MALAT-1)是高度保守的lncRNA,其在肿瘤中呈过表达并促进肿瘤细胞的侵袭和转移[46]。研究表明,MALAT-1在源自胰腺和乳腺肿瘤的CSC中过表达[47-48]。MALAT-1可促进CSC表型分化,并调节其增殖、迁移、集落形成以及自我更新能力[47-50]。MALAT-1具有与miR-200c和miR-145互补的位点,因此可作为此类miRNA的内源性海绵,导致Sox2表达的上调[47-48]。MALAT-1的下调可降低干细胞标志物(如Bmi1、Nanog、Sox2和Nestin)在神经胶质瘤和胰腺癌中的表达[49-50]。MALAT-1还可与lncRNA HULC配合,以增加端粒重复结合因子2(telomere repeat-binding factor 2,TRF2)的表达、磷酸化和类泛素化修饰,并加速肝CSC增殖,从而导致肝癌进展。敲除TRF2可抵消MALAT-1和HULC的致癌功能。MALAT-1与HULC结合还可增强端粒酶活性并促进TERT和TERC之间的相互作用,从而延长端粒长度,延长肝CSC的寿命[50]。MALAT-1的这种干性调节作用主要基于Snail、Slug、E-cadherin、N-cadherin和Vimentin的调节导致EMT[51]

    近期Xiao等[52]的研究表明,胃癌组织中MALAT1和Sox2的表达呈正相关,对胃CSC具有正向调节作用。MALAT1作为Sox2的转录后关键调节因子,可直接与Sox2 mRNA结合,增强了mRNA的稳定性并增加其表达,敲低Sox2则部分逆转了MALAT1对胃CSC的正向调节作用;此外,该研究还发现MALAT1对放、化疗敏感性有负性调节作用。鉴于MALAT1的强大功能,近年来有学者提出MALAT1可作为肿瘤治疗的新靶点[53]

    lncARSR是在舒尼替尼耐药的肾细胞癌中被激活的lncRNA,可增强舒尼替尼对肾细胞癌的耐药性[54]。lncARSR通过直接结合miR-34/miR-449促进药物抗性,从而导致AXL/c-Met表达和信号传导及转录激活蛋白(signal transducer and activator of transcription,STAT3)、蛋白激酶B(protein kinase B,PKB/Akt)和细胞外调节蛋白激酶(extracellular regulated protein kinases,ERK)信号传导的再激活[54]。lncARSR在肾CSC呈高表达,且参与维持其干细胞表型、促进肾CSC的自我更新、致瘤及转移。高lncARSR水平可作为肾透明细胞癌患者预后不良的独立预测因子。lncARSR与Yes相关蛋白(Yes-associa-ted protein,YAP)结合,并通过阻断YAP与大肿瘤抑制激酶-1的相互作用促进其核转位。YAP在CSC细胞核呈高表达,在Hippo信号传导中充当转录共激活因子,这在CSC扩增中起关键作用[55]

    在CD133阳性的肝CSC和富含CSC的肝癌细胞中,lncARSR的表达明显增强,并可促进肝CSC的扩增。干扰lncARSR则通过抑制肝癌细胞的去分化和降低肝CSC的自我更新能力抑制肝CSC的扩增,并使肝癌细胞对索拉非尼或顺铂更敏感。在肝癌细胞中,STAT3是lncARSR的下游靶基因,抑制STAT3的表达则使肝CSC比例降低,从而证实了lncARSR促进肝CSC增殖过程需要STAT3参与[56]

    在肝CSC和富含CSC的肝癌细胞中,lncTHOR的表达明显增加。干扰lncTHOR可抑制肝癌细胞的去分化,降低肝CSC的自我更新能力,从而抑制肝CSC的扩增。在肝癌细胞中,β-catenin是lncTHOR的下游靶基因。特异性抑制β-catenin则使肝CSC比例降低,进一步证实了β-catenin是lncTHOR促进肝CSC扩增所必需的因子。此外,干扰lncTHOR表达可使肝癌细胞对索拉非尼治疗的敏感性更高,提示lncTHOR表达可使低表达的肝癌患者可能受益于索拉非尼治疗[57]

    CSC是肿瘤发生、维持、进展、转移和复发的关键参与者。此外,CSC对常规药物治疗具有耐药性[58]。由于CSC在分子和功能上与一般肿瘤细胞不同,因此可开发治疗性替代物以消除可能引起肿瘤进展或复发的CSC。这种选择性疗法具有较少的副作用,且对非CSC表现出较低的毒性。目前研究已充分证明,lncRNA具有诱导CSC自我更新、迁移、侵袭、耐药和分化的重要能力[59]。且近年来人们对lncRNA在控制细胞分裂、赋予肿瘤耐药差异性、保护端粒末端、维持基因组结构、与关键信号通路相互作用以及调节肿瘤干细胞相关基因的功能等方面进行了深入研究,并取得了较大进展[33, 35, 59]

    晚期肿瘤的CSC利用对称分裂策略使子细胞能够自我更新,从而迅速增加肿瘤内CSC的数量[60]。这一发现表明,控制或避免晚期肿瘤中对称的CSC分裂可能对临床有益。由于lncRNA可能在调节CSC不对称性和对称性平衡中发挥独特作用[33],改变其功能可能会干扰分裂机制。因此,控制CSC分裂方式的lncRNA可被视为治疗晚期肿瘤的潜在靶标。

    lncRNA也可能参与CSC中耐药性的获得和维持。lncRNA可激活几种机制以促进抗药性,包括调节药物转运蛋白表达水平、调节存活信号传导途径、避免细胞凋亡和诱导DNA修复[39]

    lncRNA参与包括肿瘤发生、发展在内的诸多病理生理过程,而CSC可以驱动肿瘤的发生和发展。鉴于近年来lncRNA与CSC之间的关系开始受到学界的关注,本文综述了参与CSC自我更新、维持和分化相关的lncRNA的功能及潜在分子机制。

    CSC转移、逃避常规治疗的能力成为肿瘤复发的主要原因。尽管其在肿瘤发展中起着重要作用,但这种细胞亚群的调节机制尚未完全明确,因此需进行更深入的研究。lncRNA可在不同水平以不同方式发挥功能,然而迄今为止,仅少数lncRNA被鉴定为参与CSC的形成,因此需进一步研究lncRNA与CSC形成的关系及内在机制。

    lncRNA在人类细胞基因组中高度丰富,参与转录、翻译和翻译后水平调节多个过程。只有了解lncRNA发挥功能的分子机制并揭示lncRNA在特定组织中发挥的作用,才能为lncRNA作为诊断或预后标志物,甚至作为未来治疗的靶标提供基础。大量研究已经发现关于特定lncRNA在赋予药物抗性、控制细胞分裂、确定细胞命运和调节干细胞相关基因的转录或翻译方面的功能,且可在血清、唾液、尿液、血液或组织活检中检测到lncRNA,毫无疑问,lncRNA正成为未来肿瘤精准治疗的有力工具。

    作者贡献: 肖楠负责查阅文献、撰写初稿;李占峰、姚建新、潘志尧负责核对文献、提出修改意见;姚志峰负责修订、审核论文。
    利益冲突: 无
  • [1]

    Bohmdorfer G, Sethuraman S, Rowley MJ, et al. Long non-coding RNA produced by RNA polymerase V determines boundaries of heterochromatin[J]. Elife, 2016, 5: e19092. DOI: 10.7554/eLife.19092

    [2]

    Vance KW, Ponting CP. Transcriptional regulatory functions of nuclear long noncoding RNAs[J]. Trends Genet, 2014, 30: 348-355. DOI: 10.1016/j.tig.2014.06.001

    [3]

    Chen LL. Linking long noncoding RNA localization and function[J]. Trends Biochem Sci, 2016, 41: 761-772. DOI: 10.1016/j.tibs.2016.07.003

    [4]

    Cao J. The functional role of long non-coding RNAs and epigenetics[J]. Biol Proced Online, 2014, 16: 11. DOI: 10.1186/1480-9222-16-11

    [5]

    Bugide S, Gonugunta VK, Penugurti V, et al. HPIP promotes epithelialmesenchymal transition and cisplatin resist-ance in ovarian cancer cells through PI3K/AKT pathway activation[J]. Cell Oncol, 2017, 40: 133-144. DOI: 10.1007/s13402-016-0308-2

    [6]

    Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice[J]. Nature, 1994, 367: 645-648. DOI: 10.1038/367645a0

    [7]

    Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells[J]. Proc Natl Acad Sci USA, 2003, 100: 3983-3988. DOI: 10.1073/pnas.0530291100

    [8]

    Kreso A, Dick JE. Evolution of the cancer stem cell model[J]. Cell Stem Cell, 2014, 14: 275-291. DOI: 10.1016/j.stem.2014.02.006

    [9]

    Lee SY, Jeong EK, Ju MK, et al. Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation[J]. Mol Cancer, 2017, 16: 10. DOI: 10.1186/s12943-016-0577-4

    [10]

    Perry RB, Ulitsky I. The functions of long noncoding RNAs in development and stem cells[J]. Development, 2016, 143: 3882-3894. DOI: 10.1242/dev.140962

    [11]

    Miao F, Chen J, Shi M, et al. LncRNA HAND2-AS1 inhibits non-small cell lung cancer migration, invasion and maintains cell stemness through the interactions with TGF-β1[J]. Biosci Rep, 2019, 39. pii: BSR20181525.

    [12]

    Li XT, Li JC, Feng M, et al. Novel lncRNA-ZNF281 regulates cell growth, stemness and invasion of glioma stem-like U251s cells[J]. Neoplasma, 2018, 66: 118-127. http://www.ncbi.nlm.nih.gov/pubmed/30509101

    [13]

    Li Z, Liu H, Zhong Q, et al. LncRNA UCA1 is necessary for TGF-beta-induced epithelial-mesenchymal transition and stemness via acting as a ceRNA for Slug in glioma cells[J]. FEBS Open Bio, 2018, 8: 1855-1865. DOI: 10.1002/2211-5463.12533

    [14]

    Wang Y, Zhu P, Luo J, et al. LncRNA HAND2-AS1 promotes liver cancer stem cell self-renewal via BMP signaling[J]. EMBO J, 2019, 38: e101110. http://www.ncbi.nlm.nih.gov/pubmed/31334575

    [15]

    Zhang Q, Matsuura K, Kleiner DE, et al. Analysis of long noncoding RNA expression in hepatocellular carcinoma of different viral etiology[J]. J Transl Med, 2016, 14: 328. DOI: 10.1186/s12967-016-1085-4

    [16]

    Parasramka MA, Patel T. Long non-coding RNA regulation of liver cancer stem cell self-renewal offers new therapeutic targeting opportunities[J]. Stem Cell Investig, 2016, 3: 1. http://www.ncbi.nlm.nih.gov/pubmed/27358893

    [17]

    Wang F, Yuan JH, Wang SB, et al. Oncofetal long noncoding RNA PVT1 promotes proliferation and stem cell-like property of hepatocellular carcinoma cells by stabilizing NOP2[J]. Hepatology, 2014, 60: 1278-1290. DOI: 10.1002/hep.27239

    [18]

    Li H, Zhu L, Xu L, et al. Long noncoding RNA linc00617 exhibits oncogenic activity in breast cancer[J]. Mol Carcinog, 2017, 56: 3-17. DOI: 10.1002/mc.22338

    [19]

    Yao J, Li J, Geng P, et al. Knockdown of a HIF-2 alpha promoter upstream long noncoding RNA impairs colorectal cancer stem cell properties in vitro through HIF-2 alpha downregulation[J]. Onco Targets Ther, 2015, 8: 3467-3474. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4664519/

    [20]

    Li W, He X, Xue R, et al. Combined over-expression of the hypoxia-inducible factor 2 alpha gene and its long non-coding RNA predicts unfavorable prognosis of patients with osteosarcoma[J]. Pathol Res Pract, 2016, 212: 861-866. DOI: 10.1016/j.prp.2016.06.013

    [21]

    Wang Y, Yao J, Meng H, et al. A novel long non-coding RNA, hypoxia-inducible factor-2 alpha promoter upstream transcript, functions as an inhibitor of osteosarcoma stem cells in vitro[J]. Mol Med Rep, 2015, 11: 2534-2540. DOI: 10.3892/mmr.2014.3024

    [22]

    Saha SS, Roy Chowdhury R, Mondal NR, et al. Identification of genetic variation in the lncRNA HOTAIR associated with HPV16-related cervical cancer pathogenesis[J]. Cell Oncol, 2016, 39: 559-572. DOI: 10.1007/s13402-016-0298-0

    [23]

    Wang X, Arai S, Song X, et al. Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription[J]. Nature, 2008, 454: 126-130. DOI: 10.1038/nature06992

    [24]

    Jun Dou YN, He X, Di Wu ML, et al. Decreasing lncRNA HOTAIR expression inhibits human colorectal cancer stem cells[J]. Am J Transl Res, 2016, 8: 98-108. http://www.ncbi.nlm.nih.gov/pubmed/27069543

    [25]

    Padua Alves C, Fonseca AS, Muys BR. et al. Brief report: The lincRNA Hotair is required for epithelial-to mesenchymal transition and stemness maintenance of cancer cell lines[J]. Stem Cells, 2013, 31: 2827-2832. DOI: 10.1002/stem.1547

    [26]

    Deng J, Yang M, Jiang R, et al. Long noncoding RNA HOTAIR regulates the proliferation, self-renewal capacity, tumor formation and migration of the cancer stem-like cell (CSC) subpopulation enriched from breast cancer cells[J]. PLoS One, 2017, 12: e0170860. DOI: 10.1371/journal.pone.0170860

    [27]

    Haiyan Li JA, Wu M, Zheng Q, et al. LncRNA HOTAIR promotes human liver cancer stem cell malignant growth through downregulation of SETD2[J]. Oncotarget, 2015, 6: 27847-27864. DOI: 10.18632/oncotarget.4443

    [28]

    Fang K, Liu P, Dong S, et al. Magnetofection based on superparamagnetic ironoxide nanoparticle-mediated low lncRNA HOTAIR expression decreases the proliferation and invasion of glioma stem cells[J]. Int J Oncol, 2016, 49: 509-518. DOI: 10.3892/ijo.2016.3571

    [29]

    Min SN, Wei T, Wang XT, et al. Clinicopathological and prognostic significance of homeobox transcript antisense RNA expression in various cancers: A meta-analysis[J]. Medicine, 2017, 96: e7084. DOI: 10.1097/MD.0000000000007084

    [30]

    Lu MY, Liao YW, Chen PY, et al. Targeting LncRNA HOTAIR suppresses cancer stemness and metastasis in oral carcinomas stem cells through modulation of EMT[J]. Oncotarget, 2017, 8: 98542-98552. DOI: 10.18632/oncotarget.21614

    [31]

    Chen WY, Liu SY, Chang YS, et al. MicroRNA-34a regulates WNT/TCF7 signaling and inhibits bone metastasis in Ras activated prostate cancer[J]. Oncotarget, 2015, 6: 441-457. DOI: 10.18632/oncotarget.2690

    [32]

    Sumithra USB, Das AB. Alternative splicing within the Wnt signaling pathway: Role in cancer development[J]. Cell Oncol, 2016, 39: 1-13. DOI: 10.1007/s13402-015-0266-0

    [33]

    Wang L, Bu P, Ai Y, et al. A long non-coding RNA targets microRNA miR-34a to regulate colon cancer stem cell asymmetric division[J]. Elife, 2016, 5: e14620. DOI: 10.7554/eLife.14620

    [34]

    Poirier F, Chan CT, Timmons PM, et al. The murine H19 gene is activated during embryonic stem cell differentiation in vitro and at the time of implantation in the developing embryo[J]. Development, 1991, 113: 1105-1114. DOI: 10.1242/dev.113.4.1105

    [35]

    Peng F, Li TT, Wang KL, et al. H19/let-7/LIN28 reciprocal negative regulatory circuit promotes breast cancer stem cell maintenance[J]. Cell Death Dis, 2017, 8: e2569. http://pubmedcentralcanada.ca/pmcc/articles/PMC5386357/

    [36]

    Bauderlique-Le Roy H, Vennin C, Brocqueville G, et al. Enrichment of human stem-like prostate cells with s-SHIP promoter activity uncovers a role in Stemness for the long noncoding RNA H19[J]. Stem Cells Dev, 2015, 24: 1252-1262. DOI: 10.1089/scd.2014.0386

    [37]

    Jiang X, Yan Y, Hu M, et al. Increased level of H19 long noncoding RNA promotes invasion, angiogenesis, and stemness of glioblastoma cells[J]. J Neurosurg, 2016, 124: 129-136. DOI: 10.3171/2014.12.JNS1426

    [38]

    Viswanathan SR, Daley GQ. Lin28: A microRNA regulator with a macro role[J]. Cell, 2010, 140: 445-449. DOI: 10.1016/j.cell.2010.02.007

    [39]

    Liu N, Zhong L, Zeng J, et al. Upregulation of microRNA-200a associates with tumor proliferation, CSCs phenotype and chemosensitivity in ovarian cancer[J]. Neoplasma, 2015, 62: 550-559. DOI: 10.4149/neo_2015_066

    [40]

    Liu C, Liu R, Zhang D, et al. MicroRNA-141 suppresses prostate cancer stem cells and metastasis by targeting a cohort of pro-metastasis genes[J]. Nat Commun, 2017, 8: 14270. DOI: 10.1038/ncomms14270

    [41]

    Yang Q, Wang X, Tang C, et al. H19 promotes the migration and invasion of colon cancer by sponging miR-138 to upregulate the expression of HMGA1[J]. Int J Oncol, 2017, 50: 1801-1809. DOI: 10.3892/ijo.2017.3941

    [42]

    Liang WC, Fu WM, Wong CW, et al. The lncRNA H19 promotes epithelial to mesenchymal transition by functioning as miRNA sponges in colorectal cancer[J]. Oncotarget, 2015, 6: 22513-22525. DOI: 10.18632/oncotarget.4154

    [43]

    Li Z, Zhao X, Zhou Y, et al. The long non-coding RNA HOTTIP promotes progression and gemcitabine resistance by regulating HOXA13 in pancreatic cancer[J]. J Transl Med, 2015, 13: 84. DOI: 10.1186/s12967-015-0442-z

    [44]

    Fu Z, Chen C, Zhou Q, et al. LncRNA HOTTIP modulates cancer stem cell properties in human pancreatic cancer by regulating HOXA9[J]. Cancer Lett, 2017, 410: 68-81. DOI: 10.1016/j.canlet.2017.09.019

    [45]

    Quagliata L, Matter MS, Piscuoglio S, et al. Long noncoding RNA HOTTIP/HOXA13 expression is associated with disease progression and predicts outcome in hepatocellular carcinoma patients[J]. Hepatology, 2014, 59: 911-923. DOI: 10.1002/hep.26740

    [46]

    Chen S, Nagel S, Schneider B, et al. A new ETV6-NTRK3 cell line model reveals MALAT1 as a novel therapeutic target - a short report[J]. Cell Oncol, 2018, 41: 93-101. DOI: 10.1007/s13402-017-0356-2

    [47]

    Jiao F, Hu H, Han T, et al. Long noncoding RNA MALAT-1 enhances stem cell-like phenotypes in pancreatic cancer cells[J]. Int J Mol Sci, 2015, 16: 6677-6693. DOI: 10.3390/ijms16046677

    [48]

    Zeng L, Cen Y, Chen J. Long non-coding RNA MALAT-1 contributes to maintenance of stem cell-like phenotypes in breast cancer cells[J]. Oncol Lett, 2017, 15: 2117-2122.

    [49]

    Han Y, Zhou L, Wu T, et al. Downregulation of lncRNA-MALAT1 affects proliferation and the expression of Stemness markers in glioma stem cell line SHG139S[J]. Cell Mol Neurobiol, 2016, 36: 1097-1107. DOI: 10.1007/s10571-015-0303-6

    [50]

    Wu M, Lin Z, Li X, et al. HULC cooperates with MALAT1 to aggravate liver cancer stem cells growth through telomere repeat-binding factor 2[J]. Sci Rep, 2016, 6: 36045. DOI: 10.1038/srep36045

    [51]

    Jiao F, Hu H, Yuan C, et al. Elevated expression level of long noncoding RNA MALAT-1 facilitates cell growth, migration and invasion in pancreatic cancer[J]. Oncol Rep, 2014, 32: 2485-2492. DOI: 10.3892/or.2014.3518

    [52]

    Xiao Y, Pan J, Geng Q, et al. LncRNA MALAT1 increases the stemness of gastric cancer cells via enhancing SOX2 mRNA stability[J]. FEBS Open Bio, 2019, 9: 1212-1222. DOI: 10.1002/2211-5463.12649

    [53]

    Amodio N, Raimondi L, Juli G, et al. MALAT1: a druggable long non-coding RNA for targeted anti-cancer approaches[J]. J Hematol Oncol, 2018, 11: 63. DOI: 10.1186/s13045-018-0606-4

    [54]

    Qu L, Ding J, Chen C, et al. Exosome-transmitted lncARSR promotes Sunitinib resistance in renal Cancer by acting as a competing endogenous RNA[J]. Cancer Cell, 2016, 29: 653-668. DOI: 10.1016/j.ccell.2016.03.004

    [55]

    Qu L, Wu ZJ, Li YM, et al. A feedforward loop between lncARSR and YAP activity promotes expansion of renal tumour-initiating cells[J]. Nat Commun, 2016, 7: 12692. DOI: 10.1038/ncomms12692

    [56]

    Yang C, Cai WC, Dong ZT, et al. lncARSR promotes liver cancer stem cells expansion via STAT3 pathway[J]. Gene, 2019, 687: 73-81. DOI: 10.1016/j.gene.2018.10.087

    [57]

    Cheng Z, Lei Z, Yang P, et al. Long non-coding RNA THOR promotes liver cancer stem cells expansion via β-catenin pathway[J]. Gene, 2019, 684: 95-103. DOI: 10.1016/j.gene.2018.10.051

    [58]

    Phi LTH, Sari IN, Yang YG, et al. Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in Cancer treatment[J]. Stem Cells Int, 2018, 2018: 5416923. http://europepmc.org/abstract/MED/29681949

    [59]

    Lee S, Seo HH, Lee CY, et al. Human long noncoding RNA regulation of stem cell potency and differentiation[J]. Stem Cells Int, 2017, 2017: 6374504. http://pubmedcentralcanada.ca/pmcc/articles/PMC5603141/

    [60]

    Boman BM, Wicha MS, Fields JZ, et al. Symmetric division of cancer stem cells-a key mechanism in tumor growth that should be targeted in future therapeutic approaches[J]. Clin Pharmacol Ther, 2007, 81: 893-898. DOI: 10.1038/sj.clpt.6100202

  • 期刊类型引用(3)

    1. 伏计能,赵慧娟,王玉霞. 天麻素对胶质瘤细胞增殖和凋亡的影响. 中国临床药理学杂志. 2022(06): 518-522 . 百度学术
    2. 解丹丹,夏磊,李松果,潘献柱. 前列腺癌组织中LncRNA LINC00355、miR-494-3p、CCND2的表达及临床意义. 中国医药导报. 2022(11): 123-126 . 百度学术
    3. 杨晓峰,王倩倩,田涛. 长链非编码RNA LINC01006在前列腺癌组织中的表达水平及临床意义. 淮海医药. 2021(04): 331-335+340 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  306
  • HTML全文浏览量:  135
  • PDF下载量:  21
  • 被引次数: 3
出版历程
  • 收稿日期:  2019-10-21
  • 录用日期:  2020-04-25
  • 刊出日期:  2021-05-29

目录

/

返回文章
返回
x 关闭 永久关闭