长链非编码RNA与肿瘤干细胞

肖楠, 李占峰, 姚建新, 潘志尧, 姚志峰

肖楠, 李占峰, 姚建新, 潘志尧, 姚志峰. 长链非编码RNA与肿瘤干细胞[J]. 协和医学杂志, 2021, 12(3): 373-379. DOI: 10.12290/xhyxzz.20190231
引用本文: 肖楠, 李占峰, 姚建新, 潘志尧, 姚志峰. 长链非编码RNA与肿瘤干细胞[J]. 协和医学杂志, 2021, 12(3): 373-379. DOI: 10.12290/xhyxzz.20190231
XIAO Nan, LI Zhanfeng, YAO Jianxin, PAN Zhiyao, YAO Zhifeng. Long Non-coding RNA and Cancer Stem Cells[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(3): 373-379. DOI: 10.12290/xhyxzz.20190231
Citation: XIAO Nan, LI Zhanfeng, YAO Jianxin, PAN Zhiyao, YAO Zhifeng. Long Non-coding RNA and Cancer Stem Cells[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(3): 373-379. DOI: 10.12290/xhyxzz.20190231

长链非编码RNA与肿瘤干细胞

详细信息
    通讯作者:

    姚志峰 电话:025-58509711,E-mail:yzf058565@126.com

  • 中图分类号: R73

Long Non-coding RNA and Cancer Stem Cells

More Information
  • 摘要: 肿瘤包含具有干细胞特性的功能细胞亚群,称为肿瘤干细胞(cancer stem cell,CSC),这些细胞亚群在肿瘤的发生和发展中起重要作用。长链非编码RNA(long non-coding RNA,lncRNA)是CSC亚群的关键调节因子,具有诱导CSC自我更新、迁移、侵袭、耐药和分化的重要能力。本文对近年来lncRNA在不同CSC发生、维持和调节中的功能及作用机制进行综述,以期通过lncRNA寻找肿瘤治疗新靶点,以选择性消除CSC,最终改善肿瘤患者的预后。
    Abstract: Tumors contain a functional subpopulation of cells that exhibit characteristics of stem cells. This cell subgroup, named cancer stem cell (CSC), plays important roles in the initiation and progression of cancers. As a key regulator of the CSC subgroup, long non-coding RNA (lncRNA) has the important ability to induce self-renewal, migration, invasion, drug resistance and differentiation of CSC. This review summarizes recent research on the functions and mechanisms of lncRNA in the occurrence, maintenance and regulation of different CSC, with the aim of finding new targets for cancer treatment through lncRNA to selectively eliminate CSC and ultimately improve the prognosis of patients with cancer.
  • 碘是人体必需的微量元素之一,甲状腺通过摄取碘和酪氨酸合成甲状腺激素,包括三碘甲状腺原氨酸(triiodothyronine, T3)、甲状腺素(thyronine, T4),并以甲状腺球蛋白的形式储存于甲状腺滤泡腔内。妊娠期碘缺乏可导致母体甲状腺激素不足,影响胎儿神经系统智力发育。另一方面,碘摄入过量会影响甲状腺功能,进而产生多种负面健康效应。2015年Shi等[1]对中国辽宁地区7190例妊娠期女性进行的横断面调查显示,14.5%存在碘超足量(中位尿碘水平250~499 μg/L),3.2%处于碘过量状态(中位尿碘水平>500 μg/L),而碘超足量及碘过量分别使女性妊娠期罹患亚临床甲状腺功能减低的风险增高1.72和2.17倍,同时碘过量可使单纯性低甲状腺素血症发生风险升高2.85倍。2019年《妊娠和产后甲状腺疾病诊治指南(第2版)》指出,妊娠期女性摄入碘>500 μg/d有导致胎儿甲状腺功能减退的风险,应根据不同地区不同个体的碘营养状况制定不同的摄碘策略[2]。因此,对妊娠期女性进行碘代谢评价、识别碘过量,并予以碘摄入调整对改善妊娠结局、促进母婴健康具有重要意义。

    尿样采集相对简单方便、无侵入性,是目前最常用的碘代谢评价方式,但由于随机尿碘测定易受到尿量变化、妊娠期间肾小球滤过率增加、尿碘排泄量的影响,个体随机尿碘水平常具有较大波动性。世界卫生组织(World Health Organization, WHO)指出,大样本人群的尿碘测定中位数可被用来反映群体的碘营养水平,但其不能直接用于反映个体的碘营养状态[3]。2019年中华医学会内分泌学分会[2]推荐使用单次尿碘与尿肌酐的比值(尿碘肌酐比)作为衡量妊娠期女性碘营养的指标,其能排除尿量对尿碘的影响,但目前仍缺乏确切的诊断界值。本研究对有孕前碘过量暴露史的妊娠期女性进行血清及尿碘评价指标检测,以血清碘为金标准,评估尿碘代谢指标对识别碘过量的应用价值,以期为妊娠期碘代谢评价指标的临床应用提供参考。

    本研究为横断面调查。以2018年1—12月于北京协和医院临床营养科进行孕期营养咨询或管理的孕妇为研究对象。

    纳入标准:(1)孕前行子宫输卵管造影(hysterosalpinography, HSG)检查,且以碘化油为造影剂;(2)饮食规律稳定,可配合进行膳食状况调查,并留取血、尿标本。

    排除标准:碘代谢相关指标资料不完整者。

    本研究已通过北京协和医院伦理审查委员会审批(审批号:ZS-1485)。

    门诊询问并记录孕妇的人口学信息、临床病史及碘暴露史、用药史、既往及孕期甲状腺功能,包括血清促甲状腺激素(thyroid-stimulating hormone, TSH)、T3、T4、游离三碘甲状腺原氨酸(free triiodothyronine, FT3)、游离甲状腺素(free thyroxine, FT4)、过氧化物酶抗体。采用72 h膳食回顾法估算膳食碘摄入量,并完善实验室碘营养状况评价。

    孕妇保持常规饮食状态≥3 d后,留取晨起空腹静脉血2 mL(皮肤消毒时用酒精代替碘伏),留取晨尿5 mL(同期收集24 h尿量),送检北京协和医院检验科。应用iCAP-Q定量分析仪(美国Thermo Fisher Scientific公司),采用电感耦合等离子体质谱法(inductively coupled plasma mass spectrometry, ICP-MS)检测血清碘及随机尿碘,采用肌氨酸氧化酶法测定晨尿肌酐,并计算尿碘肌酐比及24 h尿碘排泄量(随机尿碘×24 h尿量)。

    WHO指出,ICP-MS测定的血清碘参考范围为45~90 μg/L[4]。甲状腺功能判读标准依据2019年中华医学会内分泌学会及围产医学分会联合发布的《妊娠和产后甲状腺疾病诊治指南(第2版)》[2]。(1) 甲状腺功能减退包括临床甲状腺功能减退、亚临床甲状腺功能减退,前者的诊断标准为血清TSH>妊娠期特异性参考范围上限且血清FT4<妊娠期参考范围下限,后者的诊断标准为血清TSH>妊娠期特异性参考范围上限且血清FT4在妊娠期特异性参考范围之内;如血清FT4正常,TSH虽低于妊娠期特异性参考范围上限(或<4.0 mU/L),但>2.5 mU/L且伴甲状腺过氧化物酶抗体阳性也可诊断为亚临床甲状腺功能减退。(2)甲状腺毒症:血清TSH<妊娠期特异性参考范围下限(或<0.1 mU/L),且FT4>妊娠期特异性参考范围上限,且排除甲状腺功能亢进。

    既往文献报道应用尿碘肌酐比识别妊娠期碘过量状态的受试者工作特征(receiver operating characteristic,ROC)曲线下面积(area under curve, AUC)为0.75[5],统计检验的显著性水准α=0.05,β为0.1,经MedCalc软件估算样本量≥52例。

    血、尿碘代谢指标检测易受环境、饮食、检测过程等诸多因素影响,亦是本文最可能存在的偏倚。本文对各标本的检测严格遵守标准操作流程,以降低操作时的干扰。

    采用SPSS 16.0软件进行统计学分析,计量资料均进行正态性检验(Kolmogorov-Smirnov法),符合正态分布的计量资料以均数±标准差表示;非正态分布的计量资料以中位数(四分位数)表示,组间比较采用非参数检验;计数资料以频数(百分数)表示,组间比较采用χ2检验。Spearman相关法分析不同尿碘代谢评价指标与血清碘的相关性。以碘过量(血清碘>90 μg/L)为金标准,绘制ROC曲线评估不同尿碘代谢指标诊断碘过量的临床价值,并计算Youden指数,确定各指标的最佳诊断界值。采用多因素Logistic回归分析尿碘肌酐比对甲状腺功能异常的影响。以P<0.05为差异具有统计学意义。

    共70例符合纳入及排除标准的孕妇入选本研究。妊娠时年龄29~45岁,平均(35.6±3.57)岁,均长期居住于北京市;58例(82.86%)孕前行1次HSG检查,10例(14.29%)行2次HSG检查,2例(2.86%)行3次HSG检查。末次HSG检查距受孕中位时间6.65(2.47, 12.70)个月。调查时平均孕周为(16.63± 8.63)周,30例(42.86%)处于早孕期,35例(50.00%)处于中孕期,5例(7.14%)处于晚孕期。基于食物成分表(2009年)估算孕妇膳食摄碘状况,日常膳食平均摄入碘(187.18±123.67)μg/d。11例孕妇长期口服含碘的孕期维生素/矿物质复合制剂(在膳食之外提供碘量150~225 μg/d)。

    70例孕妇血清碘为41.00~3690.00 μg/L,中位数为138.00(79.00,510.50)μg/L,显著高于WHO规定的血清碘上限90 μg/L(P<0.001)。其中50例(71.43%)血清碘>90 μg/L,20例(28.57%)≤90 μg/L。血清碘>90 μg/L孕妇的随机尿碘、尿碘肌酐比、24 h尿碘排泄量均显著高于血清碘≤90 μg/L孕妇(P均<0.001)(表 1)。

    表  1  70例孕妇妊娠期尿碘代谢指标比较[M(P25, P75)]
    组别 血清碘(μg/L) 随机尿碘(μg/L) 尿碘肌酐比(μg/g) 24 h尿碘排泄量(μg)
    血清碘>90 μg/L(n=50) 286.00(139.00, 1177.50) 1045.00(500.00, 2567.50) 870.00(439.00, 2451.00) 540.00(236.00, 925.00)
    血清碘≤90 μg/L(n=20) 71.50(56.00, 79.00) 204.00(131.00, 352.00) 135.00(79.00, 231.00) 199.50(104.25, 314.75)
    P <0.001 <0.001 <0.001 <0.001
    下载: 导出CSV 
    | 显示表格

    Spearman相关法分析显示,随机尿碘(rs=0.749,P<0.001)、尿碘肌酐比(rs=0.794,P<0.001)、24 h尿碘排泄量(rs=0.768,P<0.001)均与血清碘呈显著正相关。

    以血清碘>90 μg/L为诊断碘过量的金标准,分别评估随机尿碘、尿碘肌酐比、24 h尿碘排泄量诊断碘过量的临床价值。ROC曲线分析显示,随机尿碘、尿碘肌酐比、24 h尿碘排泄量诊断碘过量的AUC分别为0.732(95% CI: 0.619~0.846)、0.780(95% CI: 0.662~0.898)、0.802(95% CI: 0.697~0.907),两两比较均无显著差异(随机尿碘比尿碘肌酐比,P=0.283;尿碘肌酐比比24 h尿碘排泄量,P=0.393;随机尿碘比24 h尿碘排泄量,P=0.189)(表 2图 1)。

    表  2  不同尿碘代谢指标识别妊娠期碘过量的受试者工作特征曲线分析结果
    指标 曲线下面积(95% CI) P 最大Youden指数 最佳诊断界值 灵敏度(%) 特异度(%)
    随机尿碘 0.732(0.619~0.846) 0.003 0.491 654 μg/L 48.5 100
    尿碘肌酐比 0.780(0.662~0.898) <0.001 0.468 307.5 μg/g 69.1 73.3
    24 h尿碘排泄量 0.802(0.697~0.907) <0.001 0.502 340.5 μg 75.4 75.0
    下载: 导出CSV 
    | 显示表格
    图  1  不同尿碘代谢指标识别妊娠期碘过量的受试者工作特征曲线

    70例孕妇中,34例(48.57%)存在临床/亚临床甲状腺功能减低,2例(2.86%)合并甲状腺毒症。结合上述分析结果,以307.5 μg/g为界值评价孕妇的碘代谢状况。以尿碘肌酐比(>307.5 μg/g与≤307.5 μg/g)、既往甲状腺疾病史(有/无)、过氧化物酶抗体(阳性/阴性)、妊娠时年龄(≥35岁/<35岁)等因素为自变量,妊娠期甲状腺功能为因变量进行多因素Logistic回归分析,结果显示,尿碘肌酐比>307.5 μg/g(OR=4.757,95% CI: 1.345~16.822,P=0.016)、有既往甲状腺疾病史(OR=8.188,95% CI: 1.447~46.320,P=0.017)的孕妇妊娠期出现甲状腺功能减低的风险显著增高,过氧化物酶抗体阳性(OR=2.213,95% CI:0.312~ 15.708,P=0.427)、妊娠时年龄≥35岁(OR=1.323,95% CI:0.395~4.427,P=0.650) 与妊娠期甲状腺功能减低无明显相关;过氧化物酶抗体阳性(OR=18.719,95% CI:1.148~305.367,P=0.040)能增加妊娠期患甲状腺毒症的风险,尿碘肌酐比>307.5 μg/g(OR=0.481, 95% CI: 0.036~6.383, P=0.579)、有既往甲状腺疾病史(OR=0.950, 95% CI: 0.052~17.442, P=0.972)、妊娠时年龄≥35岁(OR=0.880, 95% CI: 0.050~15.531, P=0.930)均与妊娠期患甲状腺毒症的风险无明显相关。

    本研究基于70例孕前有碘暴露史的女性,评价了不同尿碘代谢评价指标识别妊娠期碘过量的诊断价值。结果显示50例(71.43%)孕妇妊娠期血清碘过量;血清碘过量孕妇的随机尿碘、尿碘肌酐比、24 h尿碘排泄量均显著高于非血清碘过量孕妇。Spearman相关法分析显示,随机尿碘、尿碘肌酐比、24 h尿碘排泄量均与血清碘呈显著正相关。进一步行ROC曲线分析显示,随机尿碘、尿碘肌酐比、24 h尿碘排泄量识别孕期女性碘过量的AUC分别为0.732、0.780、0.802,最佳诊断界值分别为654 μg/L、307.5 μg/g、340.5 μg。

    碘是重要的微量元素,适宜的碘摄入可维持正常甲状腺功能。妊娠期碘摄入不足将影响母体的甲状腺功能以及胎儿正常的神经系统发育。为防止碘摄入不足,我国自20世纪末实施全民食盐加碘策略,居民的碘摄入量显著增加。2011年全国监测数据显示,妊娠期女性中位尿碘值为184.4 μg/L[6]。2014年北京市城乡调查数据显示妊娠期女性中位尿碘值为159.6 μg/L,处于碘充足(中位尿碘值150 ~249 μg/L)状态[7]。而另一方面,随着放射学、核医学等检查中含碘造影剂或含碘药物的应用,育龄期女性可能在孕前有更多的碘暴露机会,从而影响正常妊娠。

    HSG是女性不孕症的常规检查之一,多用于输卵管梗阻及其病因的诊断[8]。该检查常用40%碘化油作为造影剂,含碘量400 g/L,术中一次性使用10~20 mL,显著高于健康成人日常碘摄入标准(120 μg/d)。由于碘化油黏度高、流动缓慢,当造影剂滞留体内、排泄延迟时,可能使人体长期处于高碘暴露的环境。2006年席嘉元[9]报道显示,35.7%的女性在行HSG检查后长期存在输卵管碘化油潴留,平均滞留时间为3.1年。Kaneshige等[10]对接受HSG检查的22例女性进行前瞻性碘代谢指标监测,结果显示包括血清碘、尿碘肌酐比在内的碘评价指标在检查后≥24周均维持在显著高于检查前的状态,其中3例(13.6%)在检查后的4~8周出现一过性TSH升高(>5 μU/L)。目前中华医学会放射学会尚未对行HSG的女性在检查后受孕的间隔时间及相关监测给予要求和界定,此类孕妇在妊娠过程中处于碘过量暴露的风险。因此,对于有HSG检查史等孕前碘暴露因素的女性在妊娠期应进行碘代谢指标的个体化监测和评价。

    广义的碘代谢评价指标包括膳食摄入碘的估算,甲状腺体积、甲状腺功能、甲状腺球蛋白等甲状腺结构及功能的评价以及相关体液碘评价指标。此外,远期监测子代的神经系统及运动发育也可在一定程度上反映母体孕期的碘营养状况[11]。血清碘是反映机体碘水平的重要评价指标,其含量稳定,可反映机体近期的碘营养状况,且血清碘的检测对于识别碘过量的灵敏度高于碘缺乏[11-13]。但血液标本的检测对方法的灵敏度要求较高,多数医院由于难以开展ICP-MS等高准确性方法而无法实现临床检测血清碘。

    相较而言,临床实践中最常用的碘代谢评价采用尿液标本的碘测定。在碘摄入稳定且充足的人群中,膳食碘≥92%可被人体吸收,>90%可在24~48 h内经尿液排出。因此,尿碘水平与碘摄入状况具有良好的一致性,可反映人群的碘摄入情况。尿碘的评价指标包括随机尿碘、尿碘肌酐比、24 h尿碘排泄量[12-13]。本研究结果显示,血清碘>90 μg/L孕妇的随机尿碘、尿碘肌酐比、24 h尿碘排泄量均显著高于血清碘≤90 μg/L孕妇,提示包括随机尿碘、尿碘肌酐比、24 h尿碘排泄量在内的尿碘评价指标均有助于反映血清碘变化。

    由于单次随机尿碘浓度受环境、进食、妊娠期肾小球滤过率、尿液浓缩与稀释状况的影响,WHO建议仅将其应用于人群的碘摄入评估,通过检测较大样本量来校正尿碘水平的个体波动,以人群的中位尿碘水平来反映该群体的碘营养状况[14]。24 h尿碘排泄量的检测需收集24 h尿液,其受尿液稀释/浓缩因素的影响小,反映机体碘摄入状况较为准确,但由于其取样流程繁琐,难以广泛使用。尿碘肌酐比可排除尿量、尿液稀释/浓缩程度对尿碘的影响,相较于随机尿碘,是更为稳定且客观反映碘营养状况的指标,部分文献甚至认为其可近似等同于24 h尿碘排泄量[5, 15]。2016年Li等[5]基于中国东北的大样本妊娠期女性评价不同尿碘代谢指标的临床价值,结果显示尿碘肌酐比诊断碘不足或碘过量均有良好的灵敏度、特异度,其与24 h尿碘排泄量以及血清碘均具有高度的一致性。2019年《妊娠和产后甲状腺疾病诊治指南(第2版)》[2]推荐尿碘肌酐比用于妊娠期女性的碘代谢评价。但目前无论是临床研究还是指南、共识,均未进一步确定尿碘肌酐比识别碘过量或碘缺乏的确切界值范围。

    本研究相关性分析显示,尿碘肌酐比与血清碘呈显著正相关,且其识别碘过量的ROC曲线分析的AUC(0.780)与24 h尿碘排泄量(0.802)较接近,提示二者对识别碘过量的效能相似,可作为替代24 h尿碘排泄量的指标反映机体碘代谢状况。由于尿碘测量及肌酐校正方法不同,不同研究机构的尿碘肌酐比正常值标准不同,目前较常使用的是美国梅奥医学中心基于ICP-MS测定尿碘值并进行肌酐校正的尿碘肌酐比正常参考范围:70~530 μg/g(16~40岁);70~860 μg/g(>40~70岁);70~1150 μg/g(>70岁)。本研究通过计算ROC曲线的Youden指数,确定其识别碘过量的最佳诊断界值为307.5 μg/g,一定程度缩窄了基于实验室技术报告的尿碘肌酐比正常参考范围,提高了对碘过量人群的识别度。但该诊断界值的灵敏度及特异度分别为69.1%、73.3%,并未显现理想的诊断价值,可能与本研究样本量较少有关,期待后续在更大样本人群的研究中进一步验证。

    本研究分析发现,与尿碘肌酐比≤307.5 μg/g的孕妇相比,尿碘肌酐比>307.5 μg/g的孕妇罹患临床/亚临床甲状腺功能减低的风险增高3.757倍;但未显示出尿碘肌酐比升高与妊娠期甲状腺毒症的相关性。一方面可能原因为样本量较小;另一方面,使用尿碘肌酐比进行碘代谢评价,尚需考虑不同个体由于年龄、性别、种族、蛋白质营养状况、肌肉容积、体质量、肾功能等情况的差异,实际24 h尿肌酐排泄水平也不一致,可能使单次尿碘肌酐比在评估碘营养状况时存在偏差。

    本研究局限性:(1)样本量较小,检验效能降低;(2)纳入的研究对象均为行HSG检查的女性,缺乏空白对照;(3)为横断面调查,未能进行动态分析,期待在今后的前瞻性研究中,进行多中心、大样本随机对照研究以进一步评价不同尿碘指标对于人群碘代谢状态识别的应用价值;(4)本文以血清碘>90 μg/L为碘过量的“金标准”,尽管血清碘被多数文献视为较特异的碘代谢指标,但其诊断碘营养状况的准确度尚缺乏更高证据级别的共识。

    综上,孕前有碘暴露史的女性,妊娠期碘过量比率较高。随机尿碘、尿碘肌酐比、24 h尿碘排泄量对识别孕前有碘暴露史的女性妊娠期碘过量具有一定的价值;由于尿碘肌酐比检测方便,其值>307.5 μg/g可能有助于进一步提高孕期碘超量的识别率。

    作者贡献: 肖楠负责查阅文献、撰写初稿;李占峰、姚建新、潘志尧负责核对文献、提出修改意见;姚志峰负责修订、审核论文。
    利益冲突: 无
  • [1]

    Bohmdorfer G, Sethuraman S, Rowley MJ, et al. Long non-coding RNA produced by RNA polymerase V determines boundaries of heterochromatin[J]. Elife, 2016, 5: e19092. DOI: 10.7554/eLife.19092

    [2]

    Vance KW, Ponting CP. Transcriptional regulatory functions of nuclear long noncoding RNAs[J]. Trends Genet, 2014, 30: 348-355. DOI: 10.1016/j.tig.2014.06.001

    [3]

    Chen LL. Linking long noncoding RNA localization and function[J]. Trends Biochem Sci, 2016, 41: 761-772. DOI: 10.1016/j.tibs.2016.07.003

    [4]

    Cao J. The functional role of long non-coding RNAs and epigenetics[J]. Biol Proced Online, 2014, 16: 11. DOI: 10.1186/1480-9222-16-11

    [5]

    Bugide S, Gonugunta VK, Penugurti V, et al. HPIP promotes epithelialmesenchymal transition and cisplatin resist-ance in ovarian cancer cells through PI3K/AKT pathway activation[J]. Cell Oncol, 2017, 40: 133-144. DOI: 10.1007/s13402-016-0308-2

    [6]

    Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice[J]. Nature, 1994, 367: 645-648. DOI: 10.1038/367645a0

    [7]

    Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells[J]. Proc Natl Acad Sci USA, 2003, 100: 3983-3988. DOI: 10.1073/pnas.0530291100

    [8]

    Kreso A, Dick JE. Evolution of the cancer stem cell model[J]. Cell Stem Cell, 2014, 14: 275-291. DOI: 10.1016/j.stem.2014.02.006

    [9]

    Lee SY, Jeong EK, Ju MK, et al. Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation[J]. Mol Cancer, 2017, 16: 10. DOI: 10.1186/s12943-016-0577-4

    [10]

    Perry RB, Ulitsky I. The functions of long noncoding RNAs in development and stem cells[J]. Development, 2016, 143: 3882-3894. DOI: 10.1242/dev.140962

    [11]

    Miao F, Chen J, Shi M, et al. LncRNA HAND2-AS1 inhibits non-small cell lung cancer migration, invasion and maintains cell stemness through the interactions with TGF-β1[J]. Biosci Rep, 2019, 39. pii: BSR20181525.

    [12]

    Li XT, Li JC, Feng M, et al. Novel lncRNA-ZNF281 regulates cell growth, stemness and invasion of glioma stem-like U251s cells[J]. Neoplasma, 2018, 66: 118-127. http://www.ncbi.nlm.nih.gov/pubmed/30509101

    [13]

    Li Z, Liu H, Zhong Q, et al. LncRNA UCA1 is necessary for TGF-beta-induced epithelial-mesenchymal transition and stemness via acting as a ceRNA for Slug in glioma cells[J]. FEBS Open Bio, 2018, 8: 1855-1865. DOI: 10.1002/2211-5463.12533

    [14]

    Wang Y, Zhu P, Luo J, et al. LncRNA HAND2-AS1 promotes liver cancer stem cell self-renewal via BMP signaling[J]. EMBO J, 2019, 38: e101110. http://www.ncbi.nlm.nih.gov/pubmed/31334575

    [15]

    Zhang Q, Matsuura K, Kleiner DE, et al. Analysis of long noncoding RNA expression in hepatocellular carcinoma of different viral etiology[J]. J Transl Med, 2016, 14: 328. DOI: 10.1186/s12967-016-1085-4

    [16]

    Parasramka MA, Patel T. Long non-coding RNA regulation of liver cancer stem cell self-renewal offers new therapeutic targeting opportunities[J]. Stem Cell Investig, 2016, 3: 1. http://www.ncbi.nlm.nih.gov/pubmed/27358893

    [17]

    Wang F, Yuan JH, Wang SB, et al. Oncofetal long noncoding RNA PVT1 promotes proliferation and stem cell-like property of hepatocellular carcinoma cells by stabilizing NOP2[J]. Hepatology, 2014, 60: 1278-1290. DOI: 10.1002/hep.27239

    [18]

    Li H, Zhu L, Xu L, et al. Long noncoding RNA linc00617 exhibits oncogenic activity in breast cancer[J]. Mol Carcinog, 2017, 56: 3-17. DOI: 10.1002/mc.22338

    [19]

    Yao J, Li J, Geng P, et al. Knockdown of a HIF-2 alpha promoter upstream long noncoding RNA impairs colorectal cancer stem cell properties in vitro through HIF-2 alpha downregulation[J]. Onco Targets Ther, 2015, 8: 3467-3474. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4664519/

    [20]

    Li W, He X, Xue R, et al. Combined over-expression of the hypoxia-inducible factor 2 alpha gene and its long non-coding RNA predicts unfavorable prognosis of patients with osteosarcoma[J]. Pathol Res Pract, 2016, 212: 861-866. DOI: 10.1016/j.prp.2016.06.013

    [21]

    Wang Y, Yao J, Meng H, et al. A novel long non-coding RNA, hypoxia-inducible factor-2 alpha promoter upstream transcript, functions as an inhibitor of osteosarcoma stem cells in vitro[J]. Mol Med Rep, 2015, 11: 2534-2540. DOI: 10.3892/mmr.2014.3024

    [22]

    Saha SS, Roy Chowdhury R, Mondal NR, et al. Identification of genetic variation in the lncRNA HOTAIR associated with HPV16-related cervical cancer pathogenesis[J]. Cell Oncol, 2016, 39: 559-572. DOI: 10.1007/s13402-016-0298-0

    [23]

    Wang X, Arai S, Song X, et al. Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription[J]. Nature, 2008, 454: 126-130. DOI: 10.1038/nature06992

    [24]

    Jun Dou YN, He X, Di Wu ML, et al. Decreasing lncRNA HOTAIR expression inhibits human colorectal cancer stem cells[J]. Am J Transl Res, 2016, 8: 98-108. http://www.ncbi.nlm.nih.gov/pubmed/27069543

    [25]

    Padua Alves C, Fonseca AS, Muys BR. et al. Brief report: The lincRNA Hotair is required for epithelial-to mesenchymal transition and stemness maintenance of cancer cell lines[J]. Stem Cells, 2013, 31: 2827-2832. DOI: 10.1002/stem.1547

    [26]

    Deng J, Yang M, Jiang R, et al. Long noncoding RNA HOTAIR regulates the proliferation, self-renewal capacity, tumor formation and migration of the cancer stem-like cell (CSC) subpopulation enriched from breast cancer cells[J]. PLoS One, 2017, 12: e0170860. DOI: 10.1371/journal.pone.0170860

    [27]

    Haiyan Li JA, Wu M, Zheng Q, et al. LncRNA HOTAIR promotes human liver cancer stem cell malignant growth through downregulation of SETD2[J]. Oncotarget, 2015, 6: 27847-27864. DOI: 10.18632/oncotarget.4443

    [28]

    Fang K, Liu P, Dong S, et al. Magnetofection based on superparamagnetic ironoxide nanoparticle-mediated low lncRNA HOTAIR expression decreases the proliferation and invasion of glioma stem cells[J]. Int J Oncol, 2016, 49: 509-518. DOI: 10.3892/ijo.2016.3571

    [29]

    Min SN, Wei T, Wang XT, et al. Clinicopathological and prognostic significance of homeobox transcript antisense RNA expression in various cancers: A meta-analysis[J]. Medicine, 2017, 96: e7084. DOI: 10.1097/MD.0000000000007084

    [30]

    Lu MY, Liao YW, Chen PY, et al. Targeting LncRNA HOTAIR suppresses cancer stemness and metastasis in oral carcinomas stem cells through modulation of EMT[J]. Oncotarget, 2017, 8: 98542-98552. DOI: 10.18632/oncotarget.21614

    [31]

    Chen WY, Liu SY, Chang YS, et al. MicroRNA-34a regulates WNT/TCF7 signaling and inhibits bone metastasis in Ras activated prostate cancer[J]. Oncotarget, 2015, 6: 441-457. DOI: 10.18632/oncotarget.2690

    [32]

    Sumithra USB, Das AB. Alternative splicing within the Wnt signaling pathway: Role in cancer development[J]. Cell Oncol, 2016, 39: 1-13. DOI: 10.1007/s13402-015-0266-0

    [33]

    Wang L, Bu P, Ai Y, et al. A long non-coding RNA targets microRNA miR-34a to regulate colon cancer stem cell asymmetric division[J]. Elife, 2016, 5: e14620. DOI: 10.7554/eLife.14620

    [34]

    Poirier F, Chan CT, Timmons PM, et al. The murine H19 gene is activated during embryonic stem cell differentiation in vitro and at the time of implantation in the developing embryo[J]. Development, 1991, 113: 1105-1114. DOI: 10.1242/dev.113.4.1105

    [35]

    Peng F, Li TT, Wang KL, et al. H19/let-7/LIN28 reciprocal negative regulatory circuit promotes breast cancer stem cell maintenance[J]. Cell Death Dis, 2017, 8: e2569. http://pubmedcentralcanada.ca/pmcc/articles/PMC5386357/

    [36]

    Bauderlique-Le Roy H, Vennin C, Brocqueville G, et al. Enrichment of human stem-like prostate cells with s-SHIP promoter activity uncovers a role in Stemness for the long noncoding RNA H19[J]. Stem Cells Dev, 2015, 24: 1252-1262. DOI: 10.1089/scd.2014.0386

    [37]

    Jiang X, Yan Y, Hu M, et al. Increased level of H19 long noncoding RNA promotes invasion, angiogenesis, and stemness of glioblastoma cells[J]. J Neurosurg, 2016, 124: 129-136. DOI: 10.3171/2014.12.JNS1426

    [38]

    Viswanathan SR, Daley GQ. Lin28: A microRNA regulator with a macro role[J]. Cell, 2010, 140: 445-449. DOI: 10.1016/j.cell.2010.02.007

    [39]

    Liu N, Zhong L, Zeng J, et al. Upregulation of microRNA-200a associates with tumor proliferation, CSCs phenotype and chemosensitivity in ovarian cancer[J]. Neoplasma, 2015, 62: 550-559. DOI: 10.4149/neo_2015_066

    [40]

    Liu C, Liu R, Zhang D, et al. MicroRNA-141 suppresses prostate cancer stem cells and metastasis by targeting a cohort of pro-metastasis genes[J]. Nat Commun, 2017, 8: 14270. DOI: 10.1038/ncomms14270

    [41]

    Yang Q, Wang X, Tang C, et al. H19 promotes the migration and invasion of colon cancer by sponging miR-138 to upregulate the expression of HMGA1[J]. Int J Oncol, 2017, 50: 1801-1809. DOI: 10.3892/ijo.2017.3941

    [42]

    Liang WC, Fu WM, Wong CW, et al. The lncRNA H19 promotes epithelial to mesenchymal transition by functioning as miRNA sponges in colorectal cancer[J]. Oncotarget, 2015, 6: 22513-22525. DOI: 10.18632/oncotarget.4154

    [43]

    Li Z, Zhao X, Zhou Y, et al. The long non-coding RNA HOTTIP promotes progression and gemcitabine resistance by regulating HOXA13 in pancreatic cancer[J]. J Transl Med, 2015, 13: 84. DOI: 10.1186/s12967-015-0442-z

    [44]

    Fu Z, Chen C, Zhou Q, et al. LncRNA HOTTIP modulates cancer stem cell properties in human pancreatic cancer by regulating HOXA9[J]. Cancer Lett, 2017, 410: 68-81. DOI: 10.1016/j.canlet.2017.09.019

    [45]

    Quagliata L, Matter MS, Piscuoglio S, et al. Long noncoding RNA HOTTIP/HOXA13 expression is associated with disease progression and predicts outcome in hepatocellular carcinoma patients[J]. Hepatology, 2014, 59: 911-923. DOI: 10.1002/hep.26740

    [46]

    Chen S, Nagel S, Schneider B, et al. A new ETV6-NTRK3 cell line model reveals MALAT1 as a novel therapeutic target - a short report[J]. Cell Oncol, 2018, 41: 93-101. DOI: 10.1007/s13402-017-0356-2

    [47]

    Jiao F, Hu H, Han T, et al. Long noncoding RNA MALAT-1 enhances stem cell-like phenotypes in pancreatic cancer cells[J]. Int J Mol Sci, 2015, 16: 6677-6693. DOI: 10.3390/ijms16046677

    [48]

    Zeng L, Cen Y, Chen J. Long non-coding RNA MALAT-1 contributes to maintenance of stem cell-like phenotypes in breast cancer cells[J]. Oncol Lett, 2017, 15: 2117-2122.

    [49]

    Han Y, Zhou L, Wu T, et al. Downregulation of lncRNA-MALAT1 affects proliferation and the expression of Stemness markers in glioma stem cell line SHG139S[J]. Cell Mol Neurobiol, 2016, 36: 1097-1107. DOI: 10.1007/s10571-015-0303-6

    [50]

    Wu M, Lin Z, Li X, et al. HULC cooperates with MALAT1 to aggravate liver cancer stem cells growth through telomere repeat-binding factor 2[J]. Sci Rep, 2016, 6: 36045. DOI: 10.1038/srep36045

    [51]

    Jiao F, Hu H, Yuan C, et al. Elevated expression level of long noncoding RNA MALAT-1 facilitates cell growth, migration and invasion in pancreatic cancer[J]. Oncol Rep, 2014, 32: 2485-2492. DOI: 10.3892/or.2014.3518

    [52]

    Xiao Y, Pan J, Geng Q, et al. LncRNA MALAT1 increases the stemness of gastric cancer cells via enhancing SOX2 mRNA stability[J]. FEBS Open Bio, 2019, 9: 1212-1222. DOI: 10.1002/2211-5463.12649

    [53]

    Amodio N, Raimondi L, Juli G, et al. MALAT1: a druggable long non-coding RNA for targeted anti-cancer approaches[J]. J Hematol Oncol, 2018, 11: 63. DOI: 10.1186/s13045-018-0606-4

    [54]

    Qu L, Ding J, Chen C, et al. Exosome-transmitted lncARSR promotes Sunitinib resistance in renal Cancer by acting as a competing endogenous RNA[J]. Cancer Cell, 2016, 29: 653-668. DOI: 10.1016/j.ccell.2016.03.004

    [55]

    Qu L, Wu ZJ, Li YM, et al. A feedforward loop between lncARSR and YAP activity promotes expansion of renal tumour-initiating cells[J]. Nat Commun, 2016, 7: 12692. DOI: 10.1038/ncomms12692

    [56]

    Yang C, Cai WC, Dong ZT, et al. lncARSR promotes liver cancer stem cells expansion via STAT3 pathway[J]. Gene, 2019, 687: 73-81. DOI: 10.1016/j.gene.2018.10.087

    [57]

    Cheng Z, Lei Z, Yang P, et al. Long non-coding RNA THOR promotes liver cancer stem cells expansion via β-catenin pathway[J]. Gene, 2019, 684: 95-103. DOI: 10.1016/j.gene.2018.10.051

    [58]

    Phi LTH, Sari IN, Yang YG, et al. Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in Cancer treatment[J]. Stem Cells Int, 2018, 2018: 5416923. http://europepmc.org/abstract/MED/29681949

    [59]

    Lee S, Seo HH, Lee CY, et al. Human long noncoding RNA regulation of stem cell potency and differentiation[J]. Stem Cells Int, 2017, 2017: 6374504. http://pubmedcentralcanada.ca/pmcc/articles/PMC5603141/

    [60]

    Boman BM, Wicha MS, Fields JZ, et al. Symmetric division of cancer stem cells-a key mechanism in tumor growth that should be targeted in future therapeutic approaches[J]. Clin Pharmacol Ther, 2007, 81: 893-898. DOI: 10.1038/sj.clpt.6100202

  • 期刊类型引用(0)

    其他类型引用(1)

计量
  • 文章访问数:  306
  • HTML全文浏览量:  135
  • PDF下载量:  21
  • 被引次数: 1
出版历程
  • 收稿日期:  2019-10-21
  • 录用日期:  2020-04-25
  • 刊出日期:  2021-05-29

目录

/

返回文章
返回
x 关闭 永久关闭