留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

角质形成细胞Wnt5a调控MMP9参与CRPS-Ⅰ型外周敏化机制研究

朱贺 闻蓓 许力 黄宇光

朱贺, 闻蓓, 许力, 黄宇光. 角质形成细胞Wnt5a调控MMP9参与CRPS-Ⅰ型外周敏化机制研究[J]. 协和医学杂志, 2024, 15(2): 335-343. doi: 10.12290/xhyxzz.2023-0551
引用本文: 朱贺, 闻蓓, 许力, 黄宇光. 角质形成细胞Wnt5a调控MMP9参与CRPS-Ⅰ型外周敏化机制研究[J]. 协和医学杂志, 2024, 15(2): 335-343. doi: 10.12290/xhyxzz.2023-0551
ZHU He, WEN Bei, XU Li, HUANG Yuguang. Mechanism of Wnt5a on Keratinocyte Regulating MMP9 for CRPS-Ⅰ Peripheral Sensitization[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(2): 335-343. doi: 10.12290/xhyxzz.2023-0551
Citation: ZHU He, WEN Bei, XU Li, HUANG Yuguang. Mechanism of Wnt5a on Keratinocyte Regulating MMP9 for CRPS-Ⅰ Peripheral Sensitization[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(2): 335-343. doi: 10.12290/xhyxzz.2023-0551

角质形成细胞Wnt5a调控MMP9参与CRPS-Ⅰ型外周敏化机制研究

doi: 10.12290/xhyxzz.2023-0551
基金项目: 

国家自然科学基金 82271262

详细信息
    通讯作者:

    许力,E-mail:pumchxuli@163.com

    黄宇光,E-mail:garypumch@163.com

  • 中图分类号: R614; R364

Mechanism of Wnt5a on Keratinocyte Regulating MMP9 for CRPS-Ⅰ Peripheral Sensitization

Funds: 

National Natural Science Foundation of China 82271262

More Information
  • 摘要:   目的  探究皮肤角质形成细胞Wnt5a通过靶向调控基质金属蛋白酶9(matrix metalloproteinase-9,MMP9)的表达参与复杂区域疼痛综合征(complex regional pain syndrome, CRPS)-Ⅰ型外周敏化的机制,寻找该慢性疼痛的潜在治疗策略。  方法  本研究分为两部分,第一部分为体外实验。体外培养人永生化角质形成细胞HaCaT进行氧糖剥夺/复氧(oxygen-glucose deprivation/reoxygenation,OGD/R)处理,初步观察OGD/R早期(24 h内)线粒体损伤及膜电位变化, 并探究给予不同浓度Wnt5a抑制剂Box5对MMP9的影响。第二部分为动物实验。将大鼠随机分为慢性缺血后疼痛(chronic postischemia pain, CPIP)组、Box5(20)组、Box5(40)组和对照组,每组8只,CPIP组、Box5(20)组、Box5(40)组先建立大鼠患肢缺血再灌注CPIP模型,模拟CRPS-Ⅰ型病理生理过程,Box5(20)组和Box5(40)组在此基础上分别足底注射20 μmol/L和40 μmol/L Box5溶液100 μL,对照组和CPIP组则分别注射生理盐水100 μL。通过疼痛行为学测定观察4组大鼠2周内不同时间点(D1,D2,D4,D10,D14)机械痛和热痛阈值变化情况。HE染色观察大鼠皮肤炎症浸润及角化情况,免疫荧光染色观察4组MMP9的表达情况,ELISA检测4组背根神经节(dorsal root ganglion, DRG)的IL-1β及肿瘤坏死因子α(tumor necrosis factor-α,TNF-α)水平。  结果  体外实验:HaCaT细胞进行OGD/R处理后, MMP9平均荧光强度显著增加(P<0.001);透射电镜下观察到OGD/R组出现线粒体明显萎缩,线粒体膜电位检测显示,与对照组相比,OGD/R组提示线粒体膜电位下降明显(P=0.027)。动物实验:与OGD/R组相比,仅Box5(40)组线粒体膜电位上升具有统计学差异(P=0.046)。行为学检测发现CPIP组大鼠术后各时间点(D1,D2,D4,D10,D14)机械痛阈值和热痛阈值均显著降低(P均<0.05)。HE染色提示CPIP组大鼠患足真皮层出现大量炎症细胞浸润,表皮出现过度角化,颗粒层及棘层厚度显著增加(P<0.001)。免疫荧光试验显示,CPIP组角质形成细胞MMP9荧光强度显著增加(P<0.001);与CPIP组相比,Box5(20)组(P=0.002)和Box5(40)组(P<0.001)MMP9荧光强度均显著下降。ELISA检测结果显示,CPIP组IL-1β(P=0.048)和TNF-α浓度(P=0.002)显著升高; 与CPIP组相比,Box5(40)组IL-1β(P=0.047)和TNF-α浓度(P=0.047)显著下降。  结论  外周局部缺血再灌注损伤可导致角质形成细胞MMP9过度表达,引起CRPS-Ⅰ型外周敏化。靶向抑制Wnt5a/MMP9可逆转CPIP大鼠疼痛行为,为临床治疗慢性痛提供了参考依据。
    作者贡献:朱贺负责实验设计、实验实施和论文撰写;闻蓓负责图表制作及数据分析;许力、黄宇光负责研究设计、论文修订与最终审核。
    利益冲突:所有作者均声明不存在利益冲突
  • 图  1  HaCaT细胞OGD/R后不同处理组角质形成细胞MMP9表达变化(标尺=20 μm, ×20)

    OGD/R (oxygen-glucose deprivation/reoxygenation):氧糖剥夺/复氧

    Figure  1.  MMP9 expression in different treatment groups after OGD/R in HaCaT cells (scale=20 μm, ×20)

    图  2  Wnt5a抑制剂Box5对HaCaT细胞线粒体影响

    A. 透射电镜下OGD/R组线粒体萎缩情况(标尺=500 nm);B. JC-1染色检测各组线粒体膜电位变化(标尺=20 μm, ×20)

    Figure  2.  The effect of Wnt5a inhibitor Box5 on the mitochondria of HaCaT cells

    A. Mitochondrial atrophy in OGD/R group under transmission electron microscopy (scale=500 nm); B. Mitochondrial membrane potential in each group by JC-1 detection (scale=20 μm, ×20)
    OGD/R: 同图 1

    图  3  大鼠建模给药流程图(A)及造模后疼痛行为学改变(B)

    CPIP(chronic postischemia pain):慢性缺血后疼痛;与对照组比较,*P<0.05; 与CPIP组比较,#P<0.05

    Figure  3.  Drug administration process diagram for rat modeling (A) and pain behavioral changes after modeling (B)

    图  4  CPIP后患足表皮HE染色及免疫荧光染色结果(×20)

    A. 大鼠患足表皮HE染色; B. 大鼠患足表皮免疫荧光染色(标尺=20 μm)

    Figure  4.  HE staining and immunofluorescence staining results of the affected foot epidermis after CPIP (×20)

    A. HE staining of the affected foot epidermis in rats; B. Immunofluorescence staining of rat foot epidermis (scale=20 μm)
    CPIP: 同图 3

    图  5  大鼠CPIP后DRG组织IL-1β、TNF-α水平改变

    CPIP:同图 3

    Figure  5.  Level of IL-1β and TNF-α for DRG in rats after CPIP

  • [1] Shim H, Rose J, Halle S, et al. Complex regional pain syndrome: a narrative review for the practising clinician[J]. Br J Anaesth, 2019, 123(2): e424-e433. doi:  10.1016/j.bja.2019.03.030
    [2] Louis M H, Meyer C, Legrain V, et al. Biological and psychological early prognostic factors in complex regional pain syndrome: a systematic review[J]. Eur J Pain, 2023, 27(3): 338-352. doi:  10.1002/ejp.2068
    [3] Smart K M, Ferraro M C, Wand B M, et al. Physiotherapy for pain and disability in adults with complex regional pain syndrome (CRPS) types Ⅰ and Ⅱ[J]. Cochrane Database Syst Rev, 2022, 5(5): CD010853.
    [4] Sobeeh M G, Hassan K A, Silva A G, et al. Impact of different CRPS phenotypes and diagnostic criteria on quantita-tive sensory testing outcomes: systematic review and meta-analysis[J/OL]. Pain Med: pnad144. https://doi.org/10.1093/pm/pnad144.
    [5] Xie Y K, Luo H, Zhang S X, et al. GPR177 in A-fiber sensory neurons drives diabetic neuropathic pain via WNT-mediated TRPV1 activation[J]. Sci Transl Med, 2022, 14(639): eabh2557. doi:  10.1126/scitranslmed.abh2557
    [6] Liu X, Bae C, Liu B L, et al. Development of opioid-induced hyperalgesia depends on reactive astrocytes controlled by Wnt5a signaling[J]. Mol Psychiatry, 2023, 28(2): 767-779. doi:  10.1038/s41380-022-01815-0
    [7] Lu Y T, Zhang J T, Zeng F N, et al. Human PMSCs-derived small extracellular vesicles alleviate neuropathic pain through miR-26a-5p/Wnt5a in SNI mice model[J]. J Neuroinflammation, 2022, 19(1): 221. doi:  10.1186/s12974-022-02578-9
    [8] Li J, Ruan S R, Jia J H, et al. Hydrogen attenuates postoperative pain through Trx1/ASK1/MMP9 signaling pathway[J]. J Neuroinflammation, 2023, 20(1): 22. doi:  10.1186/s12974-022-02670-0
    [9] Deng W D, Ding Z B, Wang Y Y, et al. Dendrobine attenuates osteoclast differentiation through modulating ROS/NFATc1/MMP9 pathway and prevents inflammatory bone destruction[J]. Phytomedicine, 2022, 96: 153838. doi:  10.1016/j.phymed.2021.153838
    [10] Genovese T, Cordaro M, Siracusa R, et al. Molecular and biochemical mechanism of cannabidiol in the management of the inflammatory and oxidative processes associated with endometriosis[J]. Int J Mol Sci, 2022, 23(10): 5427. doi:  10.3390/ijms23105427
    [11] Martin L J, Smith S B, Khoutorsky A, et al. Epiregulin and EGFR interactions are involved in pain processing[J]. J Clin Invest, 2017, 127(9): 3353-3366. doi:  10.1172/JCI87406
    [12] Zhu H, Wen B, Xu L, et al. Identification of potential Inflammation-Related genes and key pathways associated with complex regional pain syndrome[J]. Biomolecules, 2023, 13(5): 772. doi:  10.3390/biom13050772
    [13] Rodriguez-Trillo A, Mosquera N, Pena C, et al. Non-canonical WNT5A signaling through RYK contributes to aggressive phenotype of the rheumatoid fibroblast-like synoviocytes[J]. Front Immunol, 2020, 11: 555245. doi:  10.3389/fimmu.2020.555245
    [14] Jenei V, Sherwood V, Howlin J, et al. A t-butyloxy-carbonyl-modified Wnt5a-derived hexapeptide functions as a potent antagonist of Wnt5a-dependent melanoma cell invasion[J]. Proc Natl Acad Sci U S A, 2009, 106(46): 19473-19478. doi:  10.1073/pnas.0909409106
    [15] Modi A D, Parekh A, Pancholi Y N. Evaluating pain behaviours: widely used mechanical and thermal methods in rodents[J]. Behav Brain Res, 2023, 446: 114417. doi:  10.1016/j.bbr.2023.114417
    [16] Zhu A, Shen L, Xu L, et al. Wnt5a mediates chronic post-thoracotomy pain by regulating non-canonical pathways, nerve regeneration, and inflammation in rats[J]. Cell Signal, 2018, 44: 51-61. doi:  10.1016/j.cellsig.2018.01.017
    [17] Simonetti M, Kuner R. Spinal Wnt5a plays a key role in spinal dendritic spine remodeling in neuropathic and inflammatory pain models and in the proalgesic effects of peripheral Wnt3a[J]. J Neurosci, 2020, 40(35): 6664-6677. doi:  10.1523/JNEUROSCI.2942-19.2020
    [18] Ji R R, Xu Z Z, Wang X Y, et al. Matrix metalloprotease regulation of neuropathic pain[J]. Trends Pharmacol Sci, 2009, 30(7): 336-340. doi:  10.1016/j.tips.2009.04.002
    [19] Pan C L, Wang C Y, Zhang L, et al. Procyanidins attenuate neuropathic pain by suppressing matrix metalloproteinase-9/2[J]. J Neuroinflammation, 2018, 15(1): 187. doi:  10.1186/s12974-018-1182-9
    [20] Shan Y L, Tan S, Lin Y Y, et al. The glucagon-like peptide-1 receptor agonist reduces inflammation and blood-brain barrier breakdown in an astrocyte-dependent manner in experimental stroke[J]. J Neuroinflammation, 2019, 16(1): 242. doi:  10.1186/s12974-019-1638-6
    [21] Harrington J S, Ryter S W, Plataki M, et al. Mitochondria in health, disease, and aging[J]. Physiol Rev, 2023, 103(4): 2349-2422. doi:  10.1152/physrev.00058.2021
    [22] Zeng X, Zhang Y D, Ma R Y, et al. Activated Drp1 regulates p62-mediated autophagic flux and aggravates inflammation in cerebral ischemia-reperfusion via the ROS-RIP1/RIP3-exosome axis[J]. Mil Med Res, 2022, 9(1): 25.
    [23] Smart K M, Wand B M, O'Connell N E. Physiotherapy for pain and disability in adults with complex regional pain syndrome (CRPS) types Ⅰ and Ⅱ[J]. Cochrane Database Syst Rev, 2016, 2(2): CD010853.
    [24] Lloyd E C O, Dempsey B, Romero L. Complex regional pain syndrome[J]. Am Fam Physician, 2021, 104(1): 49-55.
    [25] Wang J, Yin C Y, Pan Y S, et al. CXCL13 contributes to chronic pain of a mouse model of CRPS-Ⅰ via CXCR5-mediated NF-κB activation and pro-inflammatory cytokine production in spinal cord dorsal horn[J]. J Neuroinflamma-tion, 2023, 20(1): 109. doi:  10.1186/s12974-023-02778-x
    [26] Palandi J, Mack J M, De Araújo I L, et al. Animal models of complex regional pain syndrome: a scoping review[J]. Neurosci Biobehav Rev, 2023, 152: 105324. doi:  10.1016/j.neubiorev.2023.105324
    [27] Huntley G W. Synaptic circuit remodelling by matrix metalloproteinases in health and disease[J]. Nat Rev Neurosci, 2012, 13(11): 743-757. doi:  10.1038/nrn3320
    [28] Page-McCaw A, Ewald A J, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling[J]. Nat Rev Mol Cell Biol, 2007, 8(3): 221-233.
    [29] Wells J M, Gaggar A, Blalock J E. MMP generated matrikines[J]. Matrix Biol, 2015, 44/46: 122-129. doi:  10.1016/j.matbio.2015.01.016
    [30] MacLauchlan S, Zuriaga M A, Fuster J J, et al. Genetic deficiency of Wnt5a diminishes disease severity in a murine model of rheumatoid arthritis[J]. Arthritis Res Ther, 2017, 19(1): 166. doi:  10.1186/s13075-017-1375-0
    [31] Jang J, Jung Y, Kim Y, et al. LPS-induced inflammatory response is suppressed by Wnt inhibitors, Dickkopf-1 and LGK974[J]. Sci Rep, 2017, 7(1): 41612. doi:  10.1038/srep41612
  • 加载中
图(5)
计量
  • 文章访问数:  1124
  • HTML全文浏览量:  24
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-20
  • 录用日期:  2023-12-07
  • 网络出版日期:  2023-12-19
  • 刊出日期:  2024-03-30

目录

    /

    返回文章
    返回

    【温馨提醒】近日,《协和医学杂志》编辑部接到作者反映,有多名不法人员冒充期刊编辑发送见刊通知,鼓动作者添加微信,从而骗取版面费的行为。特提醒您,本刊与作者联系的方式均为邮件通知或电话,稿件进度通知邮箱为:mjpumch@126.com,编辑部电话为:010-69154261,请提高警惕,谨防上当受骗!如有任何疑问,请致电编辑部核实。谢谢!