Citation: | Cheng-mei HE, Feng-chun ZHANG. Belimumab:A New Targeted Drug for Systemic Lupus Erythematosus[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(2): 130-134. DOI: 10.3969/j.issn.1674-9081.20190114 |
[1] |
Tsokos GC, Lo MS, Costa Reis P, et al. New insights into the immunopathogenesis of systemic lupus erythematosus[J]. Nat Rev Rheumatol, 2016, 12:716-730. DOI: 10.1038/nrrheum.2016.186
|
[2] |
Kamal A, Khamashta M. The efficacy of novel B cell biologics as the future of SLE treatment:a review[J]. Autoimmun Rev, 2014, 13:1094-1101. DOI: 10.1016/j.autrev.2014.08.020
|
[3] |
Sanz I, Lee FE. B cells as therapeutic targets in SLE[J]. Nat Rev Rheumatol, 2010, 6:326-337. DOI: 10.1038/nrrheum.2010.68
|
[4] |
Sanz I. Rationale for B cell targeting in SLE[J]. Semin Immunopathol, 2014, 36:365-375. DOI: 10.1007/s00281-014-0430-z
|
[5] |
Schneider P, MacKay F, Steiner V, et al. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth[J]. J Exp Med, 1999, 189:1747-1756. DOI: 10.1084/jem.189.11.1747
|
[6] |
Vincent FB, Saulep-Easton D, Figgett WA, et al. The BAFF/APRIL system:emerging functions beyond B cell biology and autoimmunity[J]. Cytokine Growth Factor Rev, 2013, 24:203-215. DOI: 10.1016/j.cytogfr.2013.04.003
|
[7] |
Vincent FB, Morand EF, Schneider P, et al. The BAFF/APRIL system in SLE pathogenesis[J]. Nat Rev Rheumatol, 2014, 10:365-373. DOI: 10.1038/nrrheum.2014.33
|
[8] |
Patke A, Mecklenbrauker I, Erdjument-Bromage H, et al. BAFF controls B cell metabolic fitness through a PKC beta- and Akt-dependent mechanism[J]. J Exp Med, 2006, 203:2551-2562. DOI: 10.1084/jem.20060990
|
[9] |
Kayagaki N, Yan M, Seshasayee D, et al. BAFF/BLyS receptor 3 binds the B cell survival factor BAFF ligand through a discrete surface loop and promotes processing of NF-kappaB2[J]. Immunity, 2002, 17:515-524. DOI: 10.1016/S1074-7613(02)00425-9
|
[10] |
Gross JA, Dillon SR, Mudri S, et al. TACI-Ig neutralizes molecules critical for B cell development and autoimmune disease:impaired B cell maturation in mice lacking BLyS[J]. Immunity, 2001, 15:289-302. DOI: 10.1016/S1074-7613(01)00183-2
|
[11] |
Schiemann B, Gommerman JL, Vora K, et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway[J]. Science, 2001, 293:2111-2114. DOI: 10.1126/science.1061964
|
[12] |
Saulep-Easton D, Vincent FB, Quah PS, et al. The BAFF receptor TACI controls IL-10 production by regulatory B cells and CLL B cells[J]. Leukemia, 2016, 30:163-172. DOI: 10.1038/leu.2015.174
|
[13] |
Ahmed SS, Wang XN, Norden J, et al. Identification and validation of biomarkers associated with acute and chronic graft versus host disease[J]. Bone Marrow Transplant, 2015, 50:1563-1571. DOI: 10.1038/bmt.2015.191
|
[14] |
Shlomchik MJ, Madaio MP, Ni D, et al. The role of B cells in lpr/lpr-induced autoimmunity[J]. J Exp Med, 1994, 180:1295-1306. DOI: 10.1084/jem.180.4.1295
|
[15] |
Yaniv G, Twig G, Shor DB, et al. A volcanic explosion of autoantibodies in systemic lupus erythematosus:a diversity of 180 different antibodies found in SLE patients[J]. Autoimmun Rev, 2015, 14:75-79. DOI: 10.1016/j.autrev.2014.10.003
|
[16] |
Vaughn SE, Kottyan LC, Munroe ME, et al. Genetic susceptibility to lupus:the biological basis of genetic risk found in B cell signaling pathways[J]. J Leukocyte Biol, 2012, 92:577-591. DOI: 10.1189/jlb.0212095
|
[17] |
Sun C, Molineros JE, Looger LL, et al. High-density genotyping of immune-related loci identifies new SLE risk variants in individuals with Asian ancestry[J]. Nat Genet, 2016, 48:323-330. DOI: 10.1038/ng.3496
|
[18] |
Steri M, Orru V, Idda ML, et al. Overexpression of the Cytokine BAFF and Autoimmunity Risk[J]. New Engl J Med, 2017, 376:1615-1626. DOI: 10.1056/NEJMoa1610528
|
[19] |
Pers JO, Daridon C, Devauchelle V, et al. BAFF overexpression is associated with autoantibody production in autoimmune diseases[J]. Ann N Y Acad Sci, 2005, 1050:34-39. DOI: 10.1196/annals.1313.004
|
[20] |
Gross JA, Johnston J, Mudri S, et al. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease[J]. Nature, 2000, 404:995-999. DOI: 10.1038/35010115
|
[21] |
Mackay F, Woodcock SA, Lawton P, et al. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations[J]. J Exp Med, 1999, 190:1697-1710. DOI: 10.1084/jem.190.11.1697
|
[22] |
Ding H, Wang L, Wu X, et al. Blockade of B-cell-activating factor suppresses lupus-like syndrome in autoimmune BXSB mice[J]. J Cell Mol Med, 2010, 14:1717-1725. http://europepmc.org/articles/PMC3829033/
|
[23] |
Jacob CO, Pricop L, Putterman C, et al. Paucity of clinical disease despite serological autoimmunity and kidney pathology in lupus-prone New Zealand mixed 2328 mice deficient in BAFF[J]. J Immunol, 2006, 177:2671-2680. DOI: 10.4049/jimmunol.177.4.2671
|
[24] |
Baker KP, Edwards BM, Main SH, et al. Generation and characterization of LymphoStat-B, a human monoclonal antibody that antagonizes the bioactivities of B lymphocyte stimulator[J]. Arthritis Rheum, 2003, 48:3253-3265. DOI: 10.1002/art.11299
|
[25] |
Nakayamada S, Tanaka Y. BAFF- and APRIL-targeted therapy in systemic autoimmune diseases[J]. Inflamm Regen, 2016, 36:6. DOI: 10.1186/s41232-016-0015-4
|
[26] |
Navarra SV, Guzman RM, Gallacher AE, et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus:a randomised, placebo-controlled, phase 3 trial[J]. Lancet, 2011, 377:721-731. DOI: 10.1016/S0140-6736(10)61354-2
|
[27] |
Furie R, Petri M, Zamani O, et al. A phase Ⅲ, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus[J]. Arthritis Rheum, 2011, 63:3918-3930. DOI: 10.1002/art.30613
|
[28] |
Dooley MA, Houssiau F, Aranow C, et al. Effect of belimumab treatment on renal outcomes:results from the phase 3 belimumab clinical trials in patients with SLE[J]. Lupus, 2013, 22:63-72. DOI: 10.1177/0961203312465781
|
[29] |
Stohl W, Schwarting A, Okada M, et al. Efficacy and Safety of Subcutaneous Belimumab in Systemic Lupus Erythema-tosus:A Fifty-Two-Week Randomized, Double-Blind, Placebo-Controlled Study[J]. Arthritis Rheumatol, 2017, 69:1016-1027. DOI: 10.1002/art.40049
|
[30] |
Zhang F, Bae SC, Bass D, et al. A pivotal phase Ⅲ, randomised, placebo-controlled study of belimumab in patients with systemic lupus erythematosus located in China, Japan and South Korea[J]. Ann Rheum Dis, 2018, 77:355-363. DOI: 10.1136/annrheumdis-2017-211631
|
[31] |
Jordan NP, D'Cruz DP. Efficacy, pharmacokinetic and pharmacodynamic profile of belimumab for systemic lupus erythematosus[J]. Expert Opin Drug Metab Toxicol, 2015, 11:1635-1645. DOI: 10.1517/17425255.2015.1077808
|
[32] |
Ginzler EM, Wallace DJ, Merrill JT, et al. Disease control and safety of belimumab plus standard therapy over 7 years in patients with systemic lupus erythematosus[J]. J Rheumatol, 2014, 41:300-309. DOI: 10.3899/jrheum.121368
|
1. |
黄悦,洪金辉,杨穗碧,姜心怡,龚宇晴,吴静. 靶向淋巴细胞治疗系统性红斑狼疮的研究进展. 中国免疫学杂志. 2024(10): 2236-2242 .
![]() | |
2. |
朱栋栋. 一线教师视角下高中生物学原创试题命制的过程及实践反思——以“系统性红斑狼疮”一题为例. 教学月刊·中学版(教学参考). 2024(12): 71-74 .
![]() | |
3. |
吴春叶,邢钧,龚宝琪. 贝利尤单抗治疗初发系统性红斑狼疮的短期疗效观察. 天津医药. 2023(07): 771-775 .
![]() | |
4. |
王敏,王明霞,邹婵娟,颜丝语,何善智,丁菱. 贝利尤单抗治疗活动性狼疮性肾炎的临床疗效及不良反应. 中国医学前沿杂志(电子版). 2023(11): 65-70 .
![]() | |
5. |
王娟,汪奎,牛彩琴. 贝利木单抗治疗系统性红斑狼疮的有效性和安全性的系统评价. 医学信息. 2021(21): 65-68 .
![]() | |
6. |
许蕾,朱芸,张昊. 贝利尤单抗治疗系统性红斑狼疮的短期临床观察. 中国医药导报. 2021(31): 96-99 .
![]() | |
7. |
杨先远,王红胜. 单克隆抗体治疗系统性红斑狼疮的临床研究进展. 中国生物制品学杂志. 2021(12): 1511-1515 .
![]() | |
8. |
邓江红,李彩凤. 提高对儿童系统性红斑狼疮的认识. 协和医学杂志. 2020(03): 276-282 .
![]() |