ZHOU Yongtai, YANG Zhenyu, LI Yan, WU Jiajing, ZHAO Bo. Research Progress on the Mechanism of Lipocalin-2 in Neurological Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2025, 16(2): 330-337. DOI: 10.12290/xhyxzz.2025-0028
Citation: ZHOU Yongtai, YANG Zhenyu, LI Yan, WU Jiajing, ZHAO Bo. Research Progress on the Mechanism of Lipocalin-2 in Neurological Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2025, 16(2): 330-337. DOI: 10.12290/xhyxzz.2025-0028

Research Progress on the Mechanism of Lipocalin-2 in Neurological Diseases

Funds: 

The Graduate Supervisor Special Project of the 940th Hospital of the Joint Logistics Support Force 2022YXKY012

The Graduate Supervisor Special Project of the 940th Hospital of the Joint Logistics Support Force 2023YXKY008

The Lanzhou Science and Technology Plan Project 2024-9-141

More Information
  • Corresponding author:

    ZHAO Bo, E-mail: drzhaobo1979@163.com

  • Received Date: January 07, 2025
  • Accepted Date: February 27, 2025
  • Available Online: March 06, 2025
  • Publish Date: March 05, 2025
  • Issue Publish Date: March 29, 2025
  • Lipocalin-2 (LCN2), a member of the human lipocalin family, has been demonstrated to be closely associated with diabetes, cardiovascular diseases, and renal disorders. Recent studies have indicated that LCN2 plays a significant regulatory role in the pathogenesis and progression of various neurological diseases by mediating pathways such as inflammation, oxidative stress, and ferroptosis. This article reviews the research advancements on the mechanism of LCN2 in neurological disorders, including cerebrovascular diseases, cognitive impairment disorders, Parkinson's disease, depression, and anxiety disorders, aiming to enhance clinical understanding.

  • [1]
    Al-Kuraishy H M, Jabir M S, Albuhadily A K, et al. The Link between metabolic syndrome and Alzheimer disease: a mutual relationship and long rigorous investigation[J]. Ageing Res Rev, 2023, 91: 102084. DOI: 10.1016/j.arr.2023.102084
    [2]
    Kessel J C, Weiskirchen R, Schröder S K. Expression analysis of lipocalin 2 (LCN2) in reproductive and non-reproductive tissues of Esr1-deficient mice[J]. Int J Mol Sci, 2023, 24(11): 9280. DOI: 10.3390/ijms24119280
    [3]
    Jaberi S A, Cohen A, D'Souza C, et al. Lipocalin-2: structure, function, distribution and role in metabolic disorders[J]. Biomed Pharmacother, 2021, 142: 112002. DOI: 10.1016/j.biopha.2021.112002
    [4]
    Li D H, Yan Sun W, Fu B W, et al. Lipocalin-2-the myth of its expression and function[J]. Basic Clin Pharmacol Toxicol, 2020, 127(2): 142-151. DOI: 10.1111/bcpt.13332
    [5]
    Zhang W J, Chen S H, Zhuang X H. Research progress on lipocalin-2 in diabetic encephalopathy[J]. Neuroscience, 2023, 515: 74-82. DOI: 10.1016/j.neuroscience.2023.02.011
    [6]
    Peng L, Zhang C H, Xiao G. Astragalus polysaccharide alleviates angiotensin Ⅱ-induced glomerular podocyte dysfunction by inhibiting the expression of RARRES1 and LCN2[J]. Clin Exp Pharmacol Physiol, 2023, 50(6): 504-515. DOI: 10.1111/1440-1681.13767
    [7]
    Huang Z X, Li Y, Qian Y, et al. Tumor-secreted LCN2 impairs gastric cancer progression via autocrine inhibition of the 24p3R/JNK/c-Jun/SPARC axis[J]. Cell Death Dis, 2024, 15(10): 756. DOI: 10.1038/s41419-024-07153-z
    [8]
    Liu R J, Wang J, Chen Y, et al. NOX activation in reactive astrocytes regulates astrocytic LCN2 expression and neurodegeneration[J]. Cell Death Dis, 2022, 13(4): 371. DOI: 10.1038/s41419-022-04831-8
    [9]
    Fei X W, Dou Y N, Yang Y F, et al. Lipocalin-2 inhibition alleviates neural injury by microglia ferroptosis suppression after experimental intracerebral hemorrhage in mice via enhancing ferritin light chain expression[J]. Biochim Biophys Acta Mol Basis Dis, 2024, 1870(7): 167435. DOI: 10.1016/j.bbadis.2024.167435
    [10]
    Jiang S Y, Tian T, Yao H, et al. The cGAS-STING-YY1 axis accelerates progression of neurodegeneration in a mouse model of Parkinson's disease via LCN2-dependent astrocyte senescence[J]. Cell Death Differ, 2023, 30(10): 2280-2292. DOI: 10.1038/s41418-023-01216-y
    [11]
    Yan L, Yang F Z, Wang Y J, et al. Stress increases hepatic release of lipocalin 2 which contributes to anxiety-like behavior in mice[J]. Nat Commun, 2024, 15(1): 3034. DOI: 10.1038/s41467-024-47266-9
    [12]
    Zhang J, Song Z, Huo Y C, et al. Engeletin alleviates depressive-like behaviours by modulating microglial polarization via the LCN2/CXCL10 signalling pathway[J]. J Cell Mol Med, 2024, 28(8): e18285. DOI: 10.1111/jcmm.18285
    [13]
    Müller N, Scheld M, Voelz C, et al. Lipocalin-2 deficiency diminishes canonical NLRP3 inflammasome formation and IL-1β production in the subacute phase of spinal cord injury[J]. Int J Mol Sci, 2023, 24(10): 8689. DOI: 10.3390/ijms24108689
    [14]
    Zhang Y H, Liu J X, Yao M J, et al. Sailuotong capsule prevents the cerebral ischaemia-induced neuroinflammation and impairment of recognition memory through inhibition of LCN2 expression[J]. Oxid Med Cell Longev, 2019, 2019: 8416105.
    [15]
    Peng D H, Liu Y Y, Chen W, et al. Epidermal growth factor alleviates cerebral ischemia-induced brain injury by regulating expression of neutrophil gelatinase-associated lipocalin[J]. Biochem Biophys Res Commun, 2020, 524(4): 963-969. DOI: 10.1016/j.bbrc.2020.02.025
    [16]
    Laohavisudhi K, Sriwichaiin S, Attachaipanich T, et al. Mechanistic insights into lipocalin-2 in ischemic stroke and hemorrhagic brain injury: integrating animal and clinical studies[J]. Exp Neurol, 2024, 379: 114885. DOI: 10.1016/j.expneurol.2024.114885
    [17]
    Zhong Y, Gu L J, Ye Y Z, et al. JAK2/STAT3 axis intermediates microglia/macrophage polarization during cerebral ischemia/reperfusion injury[J]. Neuroscience, 2022, 496: 119-128. DOI: 10.1016/j.neuroscience.2022.05.016
    [18]
    Xie Y, Zhuo X F, Xing K, et al. Circulating lipocalin-2 as a novel biomarker for early neurological deterioration and unfavorable prognosis after acute ischemic stroke[J]. Brain Behav, 2023, 13(5): e2979. DOI: 10.1002/brb3.2979
    [19]
    Deng Y M, Chen D D, Gao F, et al. Exosomes derived from microRNA-138-5p-overexpressing bone marrow-derived mesenchymal stem cells confer neuroprotection to astrocytes following ischemic stroke via inhibition of LCN2[J]. J Biol Eng, 2019, 13: 71. DOI: 10.1186/s13036-019-0193-0
    [20]
    Zhao N, Xu X M, Jiang Y J, et al. Lipocalin-2 may produce damaging effect after cerebral ischemia by inducing astrocytes classical activation[J]. J Neuroinflammation, 2019, 16(1): 168. DOI: 10.1186/s12974-019-1556-7
    [21]
    Wan T, Zhu W S, Zhao Y, et al. Astrocytic phagocytosis contributes to demyelination after focal cortical ischemia in mice[J]. Nat Commun, 2022, 13(1): 1134. DOI: 10.1038/s41467-022-28777-9
    [22]
    Wang H, Wang Z, Gao Y X, et al. STZ-induced diabetes exacerbates neurons ferroptosis after ischemic stroke by upregulating LCN2 in neutrophils[J]. Exp Neurol, 2024, 377: 114797. DOI: 10.1016/j.expneurol.2024.114797
    [23]
    Si W W, You R J, Sun B, et al. The role of LCN2 in exacerbating ferroptosis levels in acute ischemic stroke injury[J]. Biochem Biophys Res Commun, 2024, 733: 150452. DOI: 10.1016/j.bbrc.2024.150452
    [24]
    Liu J, Pang S Y, Zhou S Y, et al. Lipocalin-2 aggravates blood-brain barrier dysfunction after intravenous thrombolysis by promoting endothelial cell ferroptosis via regulating the HMGB1/Nrf2/HO-1 pathway[J]. Redox Biol, 2024, 76: 103342. DOI: 10.1016/j.redox.2024.103342
    [25]
    Li J J, Xu P F, Hong Y, et al. Lipocalin-2-mediated astrocyte pyroptosis promotes neuroinflammatory injury via NLRP3 inflammasome activation in cerebral ischemia/reperfusion injury[J]. J Neuroinflammation, 2023, 20(1): 148. DOI: 10.1186/s12974-023-02819-5
    [26]
    Chen S, Chen X C, Lou X H, et al. Determination of serum neutrophil gelatinase-associated lipocalin as a prognostic biomarker of acute spontaneous intracerebral hemorrhage[J]. Clin Chim Acta, 2019, 492: 72-77. DOI: 10.1016/j.cca.2019.02.009
    [27]
    Gu L G, Chen H L, Geng R X, et al. Single-cell and spatial transcriptomics reveals ferroptosis as the most enriched programmed cell death process in hemorrhage stroke-induced oligodendrocyte-mediated white matter injury[J]. Int J Biol Sci, 2024, 20(10): 3842-3862. DOI: 10.7150/ijbs.96262
    [28]
    Yu F, Saand A, Xing C H, et al. CSF lipocalin-2 increases early in subarachnoid hemorrhage are associated with neuroinflammation and unfavorable outcome[J]. J Cereb Blood Flow Metab, 2021, 41(10): 2524-2533. DOI: 10.1177/0271678X211012110
    [29]
    Toyota Y, Wei J L, Xi G H, et al. White matter T2 hyperintensities and blood-brain barrier disruption in the hyperacute stage of subarachnoid hemorrhage in male mice: the role of lipocalin-2[J]. CNS Neurosci Ther, 2019, 25(10): 1207-1214. DOI: 10.1111/cns.13221
    [30]
    Wang Z P, Chen J Y, Toyota Y, et al. Ultra-early cerebral thrombosis formation after experimental subarachnoid hemorrhage detected on T2* magnetic resonance imaging[J]. Stroke, 2021, 52(3): 1033-1042. DOI: 10.1161/STROKEAHA.120.032397
    [31]
    Xing C H, Wang X S, Cheng C J, et al. Neuronal production of lipocalin-2 as a help-me signal for glial activation[J]. Stroke, 2014, 45(7): 2085-2092. DOI: 10.1161/STROKEAHA.114.005733
    [32]
    Du Y, Li W L, Lin L, et al. Effects of lipocalin-2 on brain endothelial adhesion and permeability[J]. PLoS One, 2019, 14(7): e0218965. DOI: 10.1371/journal.pone.0218965
    [33]
    Hamad M, Ahmed A, Ahmed S, et al. Serum lipocalin-2, and fetuin-a levels in patients with Alzheimer's disease[J]. Georgian Med News, 2023, 337: 25-29.
    [34]
    Eruysal E, Ravdin L, Kamel H, et al. Plasma lipocalin-2 levels in the preclinical stage of Alzheimer's disease[J]. Alzheimers Dement (Amst), 2019, 11: 646-653. DOI: 10.1016/j.dadm.2019.07.004
    [35]
    Hermann P, Villar-Piqué A, Schmitz M, et al. Plasma lipocalin 2 in Alzheimer's disease: potential utility in the differential diagnosis and relationship with other biomarkers[J]. Alzheimers Res Ther, 2022, 14(1): 9. DOI: 10.1186/s13195-021-00955-9
    [36]
    Naudé P J W, Ramakers I H G B, Van Der Flier W M, et al. Serum and cerebrospinal fluid neutrophil gelatinase-associated lipocalin (NGAL) levels as biomarkers for the conversion from mild cognitive impairment to Alzheimer's disease dementia[J]. Neurobiol Aging, 2021, 107: 1-10. DOI: 10.1016/j.neurobiolaging.2021.07.001
    [37]
    Staurenghi E, Cerrato V, Gamba P, et al. Oxysterols present in Alzheimer's disease brain induce synaptotoxicity by activating astrocytes: a major role for lipocalin-2[J]. Redox Biol, 2021, 39: 101837. DOI: 10.1016/j.redox.2020.101837
    [38]
    Dekens D W, De Deyn P P, Sap F, et al. Iron chelators inhibit amyloid-β-induced production of lipocalin 2 in cultured astrocytes[J]. Neurochem Int, 2020, 132: 104607. DOI: 10.1016/j.neuint.2019.104607
    [39]
    Shin H J, Kim K E, Jeong E A, et al. Amyloid β oligomer promotes microglial galectin-3 and astrocytic lipocalin-2 levels in the hippocampus of mice fed a high-fat diet[J]. Biochem Biophys Res Commun, 2023, 667: 10-17. DOI: 10.1016/j.bbrc.2023.05.026
    [40]
    Llorens F, Hermann P, Villar-Piqué A, et al. Cerebrospinal fluid lipocalin 2 as a novel biomarker for the differential diagnosis of vascular dementia[J]. Nat Commun, 2020, 11(1): 619. DOI: 10.1038/s41467-020-14373-2
    [41]
    Li X W, Wang X J, Guo L, et al. Association between lipocalin-2 and mild cognitive impairment or dementia: a systematic review and meta-analysis of population-based evidence[J]. Ageing Res Rev, 2023, 89: 101984. DOI: 10.1016/j.arr.2023.101984
    [42]
    Zhang X Y, Jing S S, Qiao O, et al. Cerebralcare Granule® combined with nimodipine improves cognitive impairment in bilateral carotid artery occlusion rats by reducing lipocalin-2[J]. Life Sci, 2021, 286: 120048. DOI: 10.1016/j.lfs.2021.120048
    [43]
    Yang X X, Sun A Q, Kong L B, et al. Inhibition of NLRP3 inflammasome alleviates cognitive deficits in a mouse model of anti-NMDAR encephalitis induced by active immunization[J]. Int Immunopharmacol, 2024, 137: 112374. DOI: 10.1016/j.intimp.2024.112374
    [44]
    Sun M J, Baker T L, Wilson C T, et al. Treatment with the vascular endothelial growth factor-A antibody, bevacizumab, has sex-specific effects in a rat model of mild traumatic brain injury[J]. J Cereb Blood Flow Metab, 2024, 44(4): 542-555. DOI: 10.1177/0271678X231212377
    [45]
    Fan Y Y, Li X H, Ma J J, et al. Increased plasma lipocalin-2 levels are associated with nonmotor symptoms and neuroimaging features in patients with Parkinson's disease[J]. J Neurosci Res, 2024, 102(2): e25303. DOI: 10.1002/jnr.25303
    [46]
    Chen K, Wang H Y, Ilyas I, et al. Microglia and astrocytes dysfunction and key neuroinflammation-based biomarkers in Parkinson's disease[J]. Brain Sci, 2023, 13(4): 634. DOI: 10.3390/brainsci13040634
    [47]
    Xiong M, Qian Q, Liang X, et al. Serum levels of lipocalin-2 in patients with Parkinson's disease[J]. Neurol Sci, 2022, 43(3): 1755-1759. DOI: 10.1007/s10072-021-05579-3
    [48]
    Wu Y Q, Deng J, Ma J S, et al. Unraveling the patho-genesis of post-stroke depression in a hemorrhagic mouse model through frontal lobe circuitry and JAK-STAT signaling[J]. Adv Sci (Weinh), 2024, 11(33): 2402152. DOI: 10.1002/advs.202402152
    [49]
    Liu Y F, Liu L, Zhi Z W, et al. Higher serum lipocalin 2 is associated with post-stroke depression at discharge[J]. BMC Neurol, 2023, 23(1): 294. DOI: 10.1186/s12883-023-03319-y
    [50]
    Chen Y R, Zheng D, Wang H W, et al. Lipocalin 2 in the paraventricular thalamic nucleus contributes to DSS-Induced depressive-like behaviors[J]. Neurosci Bull, 2023, 39(8): 1263-1277. DOI: 10.1007/s12264-023-01047-4
    [51]
    Ferreira A C, Marques F. The effects of stress on hippocampal neurogenesis and behavior in the absence of lipocalin-2[J]. Int J Mol Sci, 2023, 24(21): 15537. DOI: 10.3390/ijms242115537
    [52]
    Behrens V, Voelz C, Müller N, et al. Lipocalin 2 as a putative modulator of local inflammatory processes in the spinal cord and component of organ cross talk after spinal cord injury[J]. Mol Neurobiol, 2021, 58(11): 5907-5919. DOI: 10.1007/s12035-021-02530-7
    [53]
    Petrozziello T, Mills A N, Farhan S M K, et al. Lipocalin-2 is increased in amyotrophic lateral sclerosis[J]. Muscle Nerve, 2020, 62(2): 272-283. DOI: 10.1002/mus.26911
    [54]
    闻蓓, 朱贺, 许力, 等. 日常咖啡摄入与疼痛的关系: 基于NHANES数据库的大样本横断面研究[J]. 协和医学杂志, 2024, 15(2): 351-358.

    Wen B, Zhu H, Xu L, et al. Association between coffee consumption and pain: a cross-sectional study based on American national health and nutrition examination survey[J]. Med J PUMCH, 2024, 15(2): 351-358.
    [55]
    Song X J, Yang C L, Chen D Y, et al. Up-regulation of LCN2 in the anterior cingulate cortex contributes to neural injury-induced chronic pain[J]. Front Cell Neurosci, 2023, 17: 1140769. DOI: 10.3389/fncel.2023.1140769
    [56]
    Sciarretta F, Ceci V, Tiberi M, et al. Lipocalin-2 promotes adipose-macrophage interactions to shape peripheral and central inflammatory responses in experimental autoimmune encephalomyelitis[J]. Mol Metab, 2023, 76: 101783. DOI: 10.1016/j.molmet.2023.101783
    [57]
    das Neves S P, Serre-Miranda C, Sousa J C, et al. Lipocalin-2 does not influence EAE clinical score but it increases inflammation in central nervous system[J]. J Neuroimmunol, 2022, 368: 577872. DOI: 10.1016/j.jneuroim.2022.577872
    [58]
    Gasterich N, Bohn A, Sesterhenn A, et al. Lipocalin 2 attenuates oligodendrocyte loss and immune cell infiltration in mouse models for multiple sclerosis[J]. Glia, 2022, 70(11): 2188-2206. DOI: 10.1002/glia.24245
  • Related Articles

    [1]MA Xing, LIU Chang. Prognosis and Treatment Strategies of FIGO 2018 Stage ⅢC Cervical Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(6): 1253-1260. DOI: 10.12290/xhyxzz.2024-0097
    [2]WANG Aimin, CHEN Chaojin, WANG Mujun, WANG Ruhao, LYU Jingjing. Medical Expenses for Hospitalized Patients with Cervical Cancer Before and After the Implementation of the DRG Payment Policy[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(5): 1077-1082. DOI: 10.12290/xhyxzz.2024-0475
    [3]WANG Guangyu, YAN Junfang, WANG Zhiqun, ZHANG Yu, SUN Xiansong, LI Jing, LI Wenbo, YANG Bo, ZHANG Fuquan. Locally Advanced Cervical Cancer Treated with Online Adaptive Radiotherapy: A Case Report[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(5): 1101-1105. DOI: 10.12290/xhyxzz.2023-0076
    [4]KONG Linghua, XIAO Xiaoping, WAN Ru, XIANG Yang. Clinical Application of ThinPrep Imaging System in Cervical Cytology[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(4): 613-619. DOI: 10.12290/xhyxzz.2022-0221
    [5]SU Baiyan, QI Yafei, GUAN Hui, HE Yonglan, XUE Huadan, JIN Zhengyu. Texture Analysis of Sequential Images of T2-weighted Imaging and Diffusion-weighted Imaging for Predicting the Efficacy of Chemoradiotherapy in Cervical Squamous Cell Carcinoma[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(5): 713-720. DOI: 10.12290/xhyxzz.2021-0380
    [6]Peng PENG, Yang XIANG. Reflecting the Achievements of Practice and Leading the Future Direction: Interpretation on Cervical Cancer Staging of the International Federation of Obstetrics and Gynecology in 2018[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(1): 12-15. DOI: 10.3969/j.issn.1674-9081.20190164
    [7]Ting-tian PANG, Bo YANG, Nan LIU, Xia LIU, Jie QIU, Fu-quan ZHANG. Fixed-jaw Technique in Volumetric Modulated Arc Therapy Plan for Cervical Cancer Radiotherapy[J]. Medical Journal of Peking Union Medical College Hospital, 2014, 5(2): 184-188. DOI: 10.3969/j.issn.1674-9081.2014.02.012
    [8]Bo YANG, Ting-tian PANG, Xia LIU, Xian-song SUN, Wen-bo LI, Ke HU, Jie QIU, Fu-quan ZHANG. Comparison of the Radiation Doses Used in Helical Tomotherapy and Fixed-field Intensity-modulated Radiotherapy for Cervical Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2013, 4(4): 392-396. DOI: 10.3969/j.issn.1674-9081.2013.04.010
    [9]Jun-fang YAN, Ke HU, Lang YU, Xiao-rong HOU, Jie SHEN, Zhi-kai LIU, Fu-quan ZHANG. Role of Computed Tomography Image Guidance in Two-dimensional Brachytherapy of Cervical Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2013, 4(4): 387-391. DOI: 10.3969/j.issn.1674-9081.2013.04.009
    [10]Jie SHEN, Yue MING, Xian-chao TANG, Ke HU, Zhi-kai LIU, Xian-song SUN, Wen-bo LI, Zhi-wei YANG, Fei JIANG, Nan LI, Li-min LI, Fu-quan ZHANG. Radiosensitivity of Cervical Cancer Cells to Different Radiation Doses and Dose Rates[J]. Medical Journal of Peking Union Medical College Hospital, 2013, 4(4): 383-386. DOI: 10.3969/j.issn.1674-9081.2013.04.008

Catalog

    Article Metrics

    Article views (70) PDF downloads (6) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close