HU Liqin, LIU Ruifang, MA Wentong, WANG Guowei. Advances and Challenges of miR-223 in Cardiovascular Disease[J]. Medical Journal of Peking Union Medical College Hospital. DOI: 10.12290/xhyxzz.2024-0711
Citation: HU Liqin, LIU Ruifang, MA Wentong, WANG Guowei. Advances and Challenges of miR-223 in Cardiovascular Disease[J]. Medical Journal of Peking Union Medical College Hospital. DOI: 10.12290/xhyxzz.2024-0711

Advances and Challenges of miR-223 in Cardiovascular Disease

Funds: 

Natural Science Foundation of Xinjiang Uygur Autonomous Region( 2021D01C475)

More Information
  • Available Online: December 30, 2024
  • Cardiovascular disease (CVD) is one of the most serious diseases endangering human health at present, including myocardial ischemia syndrome, myocardial fibrosis, atrial fibrillation and other diseases. microRNAs (miRNAs) are a class of small non-coding RNA that regulate gene expression by recognizing homologous sequences and interfering with transcription, translation, or epigenetic processes. In recent years, it has been found that miR-223 is related to the occurrence and development of various CVD, and is a potential specific therapeutic target. This paper summarized the relevant studies of miR-223 in CVD by taking myocardial ischemia syndrome, myocardial fibrosis and atrial fibrillation as the starting point, and discussed its application prospects and challenges as a specific therapeutic target. It provides a new way of diagnosis and treatment of CVD.
  • [1]
    马丽媛,王增武,樊静等.《中国心血管健康与疾病报告2022》要点解读[J].中国全科医学,2023,26(32):3975-3994.
    [2]
    中国心血管健康与疾病报告2022概要[J].中国循环杂志,2023,38(06):583-612.
    [3]
    Zhang R, Zhang LJ, Yang ML, et al. Potential role of microRNA-223-3p in the tumorigenesis of hepatocellular carcinoma: A comprehensive study based on data mining and bioinformatics[J]. Mol Med Rep, 2018, 17(2):2211-2228.
    [4]
    Chen L, Heikkinen L, Wang C, et al. Trends in the development of miRNA bioinformatics tools[J]. Brief Bioinform, 2019, 20(5):1836-1852.
    [5]
    Correia de Sousa M, Gjorgjieva M, Dolicka D, et al. Deciphering miRNAs' Action through miRNA Editing[J]. Int J Mol Sci, 2019, 20(24):6249.
    [6]
    Diener C, Keller A, Meese E. Emerging concepts of miRNA therapeutics: from cells to clinic[J]. Trends Genet, 2022, 38(6):613-626.
    [7]
    Kalayinia S, Arjmand F, Maleki M, et al. MicroRNAs: roles in cardiovascular development and disease[J]. Cardiovasc Pathol, 2021, 50:107296.
    [8]
    孙垭娉,张俊峰.miR-223在心血管疾病中的研究进展[J].心脏杂志,2019,31(01):89-93.
    [9]
    JIAO P, WANG XP, LUORENG ZM, et al. miR-223: An Effective Regulator of Immune Cell Differentiation and Inflammation [J]. Int J Biol Sci, 2021, 17(9):2308-2322.
    [10]
    YUAN S, WU Q, WANG Z, et al. miR-223: An Immune Regulator in Infectious Disorders [J]. Front Immunol, 2021, 12:781815.
    [11]
    GU J, XU H, CHEN Y, et al. MiR-223 as a Regulator and Therapeutic Target in Liver Diseases [J]. Front Immunol, 2022, 13:860661.
    [12]
    Jiao P, Wang XP, Luoreng ZM, et al. miR-223: An Effective Regulator of Immune Cell Differentiation and Inflammation[J]. Int J Biol Sci, 2021, 17(9):2308-2322.
    [13]
    Zhang MW, Shen YJ, Shi J, et al. MiR-223-3p in Cardiovascular Diseases: A Biomarker and Potential Therapeutic Target[J]. Front Cardiovasc Med, 2021, 7:610561.
    [14]
    Sharma AR, Sharma G, Bhattacharya M, et al. Circulating miRNA in Atherosclerosis: A Clinical Biomarker and Early Diagnostic Tool[J]. Curr Mol Med, 2022, 22(3):250-262.
    [15]
    Libby P, Buring JE, Badimon L, et al. Atherosclerosis[J]. Nat Rev Dis Primers, 2019, 5(1):56.
    [16]
    于小华. Itaconate通过抑制巨噬细胞脂质蓄积和焦亡抗动脉粥样硬化[D].南华大学,2020.
    [17]
    游道锋. miR-223-3p通过MEK1/ERK1/2信号通路抑制炎症反应和动脉粥样硬化的进展[D].河北医科大学,2023.
    [18]
    You D, Qiao Q, Ono K, et al. miR-223-3p inhibits the progression of atherosclerosis via down-regulating the activation of MEK1/ERK1/2 in macrophages[J]. Aging (Albany NY), 2022, 14(4):1865-1878.
    [19]
    Jia Y, Cheng L, Yang J, et al. miR-223-3p Prevents Necroptotic Macrophage Death by Targeting Ripk3 in a Negative Feedback Loop and Consequently Ameliorates Advanced Atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2024, 44(1):218-237.
    [20]
    Sharma V, Dash SK, Govarthanan K, et al. Recent Advances in Cardiac Tissue Engineering for the Management of Myocardium Infarction[J]. Cells, 2021, 10(10):2538.
    [21]
    Schütte JP, Manke MC, Hemmen K, et al. Platelet-Derived MicroRNAs Regulate Cardiac Remodeling After Myocardial Ischemia[J]. Circ Res, 2023, 132(7):e96-e113.
    [22]
    Hromadka M, Motovska Z, Hlinomaz O, et al. MiR-126-3p and MiR-223-3p as Biomarkers for Prediction of Thrombotic Risk in Patients with Acute Myocardial Infarction and Primary Angioplasty[J]. J Pers Med, 2021, 11(6):508.
    [23]
    Miao S, Zhang Q, Ding W, et al. Platelet Internalization Mediates Ferroptosis in Myocardial Infarction[J]. Arterioscler Thromb Vasc Biol, 2023, 43(2):218-230.
    [24]
    Fu J, Niu H, Gao G, et al. Naringenin promotes angiogenesis of ischemic myocardium after myocardial infarction through miR-223-3p/IGF1R axis[J]. Regen Ther, 2022, 21:362-371.
    [25]
    Xiaoyu L, Wei Z, Ming Z, et al. Anti-apoptotic Effect of MiR-223-3p Suppressing PIK3C2A in Cardiomyocytes from Myocardial Infarction Rat Through Regulating PI3K/Akt Signaling Pathway[J]. Cardiovasc Toxicol, 2021, 21(8):669-682.
    [26]
    Zhang L, Yang J, Guo M, et al. MiR-223-3p affects myocardial inflammation and apoptosis following myocardial infarction via targeting FBXW7[J]. J Thorac Dis, 2022, 14(4):1146-1156.
    [27]
    Karamitsos TD, Arvanitaki A, Karvounis H, et al. Myocardial Tissue Characterization and Fibrosis by Imaging[J]. JACC Cardiovasc Imaging, 2020, 13(5):1221-1234.
    [28]
    Yuan J, Yang H, Liu C, et al. Microneedle Patch Loaded with Exosomes Containing MicroRNA-29b Prevents Cardiac Fibrosis after Myocardial Infarction[J]. Adv Healthc Mater, 2023, 12(13):e2202959.
    [29]
    Medzikovic L, Aryan L, Ruffenach G, et al. Myocardial fibrosis and calcification are attenuated by microRNA-129-5p targeting Asporin and Sox9 in cardiac fibroblasts[J]. JCI Insight, 2023, 8(9):e168655.
    [30]
    Li ML, Li RN, Ma YM, et al. MiRNA-1297 inhibits myocardial fibrosis by targeting ULK1[J]. Eur Rev Med Pharmacol Sci, 2020, 24(4):2070-2076.
    [31]
    Wang Y, Yu J, Ou C, et al. miRNA-146a-5p Inhibits Hypoxia-Induced Myocardial Fibrosis Through EndMT[J]. Cardiovasc Toxicol, 2024, 24(2):133-145.
    [32]
    Huang X, Zheng D, Liu C, et al. miR-214 could promote myocardial fibrosis and cardiac mesenchymal transition in VMC mice through regulation of the p53 or PTEN-PI3K-Akt signali pathway, promoting CF proliferation and inhibiting its ng pathway[J]. Int Immunopharmacol, 2023, 124(Pt A):110765.
    [33]
    Sun B, Zhao C, Mao Y. MiR-218-5p Mediates Myocardial Fibrosis after Myocardial Infarction by Targeting CX43[J]. Curr Pharm Des, 2021, 27(44):4504-4512.
    [34]
    王国位,窦鸿伟,周桑等.新生SD大鼠心脏损伤后修复与miR-223-3p表达的关系[J].解放军医学院学报,2019,40(02):166-171.
    [35]
    王国位. MiR-223-3p致大鼠心肌纤维化机制的研究[D].中国人民解放军海军军医大学,2019.
    [36]
    Liu X, Xu Y, Deng Y, et al. MicroRNA-223 Regulates Cardiac Fibrosis After Myocardial Infarction by Targeting RASA1[J]. Cell Physiol Biochem, 2018, 46(4):1439-1454.
    [37]
    Hu J, Wang X, Cui X, et al. Quercetin prevents isoprenaline-induced myocardial fibrosis bypromoting autophagy via regulating miR-223-3p/FOXO3[J]. Cell Cycle, 2021, 20(13):1253-1269.
    [38]
    Jin ZQ. MicroRNA targets and biomarker validation for diabetes-associated cardiac fibrosis[J]. Pharmacol Res, 2021, 174:105941.
    [39]
    张多多,李宗奇,孔晶晶等.miR-223对大鼠心肌细胞中纤维化相关信号通路分子的干预作用及机制[J].中华医学杂志,2020,100(29):2303-2308.
    [40]
    Lozano-Velasco E, Franco D, Aranega A, et al. Genetics and Epigenetics of Atrial Fibrillation[J]. Int J Mol Sci, 2020, 21(16):5717.
    [41]
    Shen NN, Zhang C, Li Z, et al. MicroRNA expression signatures of atrial fibrillation: The critical systematic review and bioinformatics analysis[J]. Exp Biol Med (Maywood), 2020, 245(1):42-53.
    [42]
    Zhang H, Yang G, Zhong N, et al. Possible key microRNAs and corresponding molecular mechanisms for atrial fibrillation[J]. Anatol J Cardiol, 2020, 23(6):324-333.
    [43]
    Dai W, Chao X, Jiang Z, et al. lncRNA KCNQ1OT1 may function as a competitive endogenous RNA in atrial fibrillation by sponging miR-223-3p[J]. Mol Med Rep, 2021, 24(6):870.
    [44]
    Vardas EP, Theofilis P, Oikonomou E, et al. MicroRNAs in Atrial Fibrillation: Mechanisms, Vascular Implications, and Therapeutic Potential[J]. Biomedicines, 2024, 12(4):811.
  • Related Articles

    [1]ZHOU Jia, LI Long, LIAO Jing. Mechanism of histone deacetylase inhibitors for treatment of idiopathic pulmonary fibrosis[J]. Medical Journal of Peking Union Medical College Hospital. DOI: 10.12290/xhyxzz.2024-0415
    [2]HUANG Lu, WU Youbin, NI Yiran, LIU Mengyuan, WU Jiangfeng, ZHANG Yanqiong. The Mechanism of miRNAs in Liver Fibrosis[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1251-1257. DOI: 10.12290/xhyxzz.2023-0125
    [3]LI Xin, LIU Lu, LIU Zhihong, ZHAO Zhihui, LUO Qin, ZHAO Qing. Progress in the Application of Oral Anticoagulants in Patients with Non-valvular Atrial Fibrillation and Chronic Renal Insufficiency[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(2): 302-307. DOI: 10.12290/xhyxzz.2021-0256
    [4]ZHANG Xi, HUANG Bing, WANG Guipeng. Progress of NLRP3 Inflammasome and Myocardial Ischemia Reperfusion Injury[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(2): 296-301. DOI: 10.12290/xhyxzz.2021-0619
    [5]Liang WANG, Zhu-jun SHEN. Intramyocardial Haemorrhage after Acute Myocardial Infarction[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(2): 170-173. DOI: 10.3969/j.issn.1674-9081.20190263
    [6]Ge LIU, Tao CHEN, Yang MU, Bao-shi HAN, Hang ZHU, Qi WANG, Yu-tao GUO, Yun-dai CHEN, Jun GUO. Value of Three Imaging Modalities for the Size Selection of Left Atrial Appendage Closure Device[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(1): 21-26. DOI: 10.3969/j.issn.1674-9081.20190196
    [8]Deyan Yang, Quan Fang. Anticoagulation Strategy in Patients with Atrial Fibrillation and Coronary Artery Disease[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(2): 118-122. DOI: 10.3969/j.issn.1674-9081.2018.02.005
    [9]Xiao-yun ZHANG, Jian-yu HAO. PTEN and Digestive Organ Fibrosis[J]. Medical Journal of Peking Union Medical College Hospital, 2017, 8(4-5): 300-304. DOI: 10.3969/j.issn.1674-9081.2017.05.020
    [10]Chen-xi JIANG, Chang-sheng MA, Jian-zeng DONG, Xing-peng LIU, De-yong LONG, Rong-hui YU, Ri-bo TANG, Jia-hui WU, Cai-hua SANG, Man NING, Xiao-hui LIU. Relationship between Aggressive Septal Ablation and Significant Left Atrial Appendage Activation Delay following Catheter Ablation of Persistent Atrial Fibrillation[J]. Medical Journal of Peking Union Medical College Hospital, 2010, 1(2): 160-166.

Catalog

    Article Metrics

    Article views (55) PDF downloads (1) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close