Citation: | GONG Chao, YU Na, CHEN Haoran. Clinical Phenotype Identification and Validation of Patients with Sepsis in the Intensive Care Unit[J]. Medical Journal of Peking Union Medical College Hospital. DOI: 10.12290/xhyxzz.2024-0353 |
[1] |
SINGER M, DEUTSCHMAN C S, SEYMOUR C W, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) [J]. Jama, 2016, 315(8): 801-10.
|
[2] |
RUDD K E, JOHNSON S C, AGESA K M, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study [J]. Lancet, 2020, 395(10219): 200-11.
|
[3] |
YUK S A, SANCHEZ-RODRIGUEZ D A , TSIFANSKY M D, et al. Recent advances in nanomedicine for sepsis treatment [J]. Ther Deliv, 2018, 9(6): 435-50.
|
[4] |
LIANG C, PAN S, WU W, et al. Glucocorticoid therapy for sepsis in the AI era: a survey on current and future approaches [J]. Comput Struct Biotechnol J,2024, 24: 292-305.
|
[5] |
FLEISCHMANN C, SCHERAG A, ADHIKARI N K J, et al. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations [J]. Am J Respir Crit Care Med, 2016, 193(3): 259-72.
|
[6] |
EVANS L, RHODES A, ALHAZZANI W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021[J]. Intensive care medicine, 2021, 47(11): 1181-247.
|
[7] |
PRESCOTT H C, ANGUS D C. Enhancing Recovery From Sepsis: A Review [J]. Jama, 2018, 319(1): 62-75.
|
[8] |
BRACHT H, HAFNER S, WEIß M. [Sepsis Update: Definition and Epidemiology] [J]. Anasthesiologie, Intensivmedizin, Notfallmedizin, Schmerztherapie : AINS, 2019, 54(1): 10-20.
|
[9] |
LELIGDOWICZ A, MATTHAY M A. Heterogeneity in sepsis: new biological evidence with clinical applications [J]. Crit Care, 2019, 23(1): 80.
|
[10] |
DELLINGER R P, BAGSHAW S M, ANTONELLI M, et al. Effect of Targeted Polymyxin B Hemoperfusion on 28-Day Mortality in Patients With Septic Shock and Elevated Endotoxin Level: The EUPHRATES Randomized Clinical Trial [J]. Jama, 2018, 320(14): 1455-63.
|
[11] |
SUPADY A, BRODIE D, WENGENMAYER T. Extracorporeal haemoadsorption: does the evidence support its routine use in critical care? [J]. The Lancet Respiratory medicine, 2022, 10(3): 307-12.
|
[12] |
KOMOROWSKI M, GREEN A, TATHAM K C, et al. Sepsis biomarkers and diagnostic tools with a focus on machine learning [J]. EBioMedicine, 2022, 86: 104394.
|
[13] |
GORDON A C, ALIPANAH-LECHNER N, BOS L D, et al. From ICU Syndromes to ICU Subphenotypes: Consensus Report and Recommendations For Developing Precision Medicine in ICU [J]. Am J Respir Crit Care Med, 2024.
|
[14] |
JOHNSON A E W, BULGARELLI L, SHEN L, et al. MIMIC-IV, a freely accessible electronic health record dataset [J]. Sci Data, 2023, 10(1): 1.
|
[15] |
Lê S, JOSSE J, HUSSON F. FactoMineR: An R Package for Multivariate Analysis [J]. Journal of Statistical Software, 2008, 25(1): 1- 18.
|
[16] |
MARTINS C, NEVES B, TEIXEIRA A S, et al. Identifying subgroups in heart failure patients with multimorbidity by clustering and network analysis [J]. BMC medical informatics and decision making, 2024, 24(1): 95.
|
[17] |
GAO C X, DWYER D, ZHU Y, et al. An overview of clustering methods with guidelines for application in mental health research [J]. Psychiatry Res, 2023, 327: 115265.
|
[18] |
BHATRAJU P K, PRINCE D K, MANSOUR S, et al. Integrated Analysis of Blood and Urine Biomarkers to Identify Acute Kidney Injury Subphenotypes and Associations With Long-term Outcomes [J]. American journal of kidney diseases : the official journal of the National Kidney Foundation, 2023, 82(3): 311-21.e1.
|
[19] |
ROUSSEEUW P J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis [J]. Journal of Computational and Applied Mathematics, 1987, 20: 53-65.
|
[20] |
CALIŃSKI T, HARABASZ J J C I S-T, METHODS. A dendrite method for cluster analysis [J]. 1974, 3: 1-27.
|
[21] |
DAVIES D L, BOULDIN D W. A Cluster Separation Measure [J]. IEEE transactions on pattern analysis and machine intelligence, 1979, PAMI-1(2): 224-7.
|
[22] |
DING L, MANE R, WU Z, et al. Data-driven clustering approach to identify novel phenotypes using multiple biomarkers in acute ischaemic stroke: A retrospective, multicentre cohort study [J]. EClinicalMedicine, 2022, 53: 101639.
|
[23] |
SEYMOUR C W, KENNEDY J N, WANG S, et al. Derivation, Validation, and Potential Treatment Implications of Novel Clinical Phenotypes for Sepsis [J]. Jama, 2019, 321(20): 2003-17.
|
[24] |
GOFTON T E, YOUNG G B. Sepsis-associated encephalopathy [J]. Nature reviews Neurology, 2012, 8(10): 557-66.
|
[25] |
WIDMANN C N, HENEKA M T. Long-term cerebral consequences of sepsis [J]. The Lancet Neurology, 2014, 13(6): 630-6.
|
[26] |
YANG K, CHEN J, WANG T, et al. Pathogenesis of sepsis-associated encephalopathy: more than blood-brain barrier dysfunction [J]. Molecular biology reports, 2022, 49(10): 10091-9.
|
[27] |
SCHULER A, WULF D A, LU Y, et al. The Impact of Acute Organ Dysfunction on Long-Term Survival in Sepsis [J]. Critical care medicine, 2018, 46(6): 843-9.
|
[28] |
LU X, QIN M, WALLINE J H, et al. CLINICAL PHENOTYPES OF SEPSIS-ASSOCIATED ENCEPHALOPATHY: A RETROSPECTIVE COHORT STUDY [J]. Shock (Augusta, Ga), 2023, 59(4): 583-90.
|
[29] |
CHEN J , SHI X , DIAO M , et al. A retrospective study of sepsis-associated encephalopathy: epidemiology, clinical features and adverse outcomes [J]. BMC emergency medicine, 2020, 20(1): 77.
|
[30] |
IWASHYNA T J, ELY E W, SMITH D M, et al. Long-term cognitive impairment and functional disability among survivors of severe sepsis [J]. Jama, 2010, 304(16): 1787-94.
|
[31] |
ANDONEGUI G, ZELINSKI E L, SCHUBERT C L, et al. Targeting inflammatory monocytes in sepsis-associated encephalopathy and long-term cognitive impairment [J]. JCI insight, 2018, 3(9).
|
[32] |
WöSTEN-VAN ASPEREN R M, LA ROI-TEEUW H M, VAN AMSTEL R B, et al. Distinct clinical phenotypes in paediatric cancer patients with sepsis are associated with different outcomes-an international multicentre retrospective study [J]. EClinicalMedicine, 2023, 65: 102252.
|
[33] |
SCHLAPBACH L J, WATSON R S, SORCE L R, et al. International Consensus Criteria for Pediatric Sepsis and Septic Shock [J]. Jama, 2024, 331(8): 665-74.
|
[34] |
RHODES A, EVANS L E, ALHAZZANI W, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016[J]. Intensive care medicine, 2017, 43(3): 304-77.
|
[35] |
PULENDRAN B, DAVIS M M. The science and medicine of human immunology [J]. Science (New York, NY), 2020, 369(6511).
|
[36] |
BHAVANI S V, SEMLER M, QIAN E T, et al. Development and validation of novel sepsis subphenotypes using trajectories of vital signs [J]. Intensive care medicine, 2022, 48(11): 1582-92.
|
[37] |
HAO C, HAO R, ZHAO H, et al. Identification and validation of sepsis subphenotypes using time-series data [J]. Heliyon, 2024, 10(7): e28520.
|
[38] |
HOU N, LI M, HE L, et al. Predicting 30-days mortality for MIMIC-III patients with sepsis-3: a machine learning approach using XGboost [J]. Journal of translational medicine, 2020, 18(1): 462.
|
[39] |
FENG M, MCSPARRON J I, KIEN D T, et al. Transthoracic echocardiography and mortality in sepsis: analysis of the MIMIC-III database [J]. Intensive care medicine, 2018, 44(6): 884-92.
|
[40] |
ZHENG R, QIAN S, SHI Y, et al. Association between triglyceride-glucose index and in-hospital mortality in critically ill patients with sepsis: analysis of the MIMIC-IV database [J]. Cardiovasc Diabetol, 2023, 22(1): 307.
|