Citation: | CHEN Zijia, PENG Wenxi, ZHANG Dezheng, LIU Xin, WANG Zhifei. Application, Challenges, and Prospects of Large Language Model in the Field of Traditional Chinese Medicine[J]. Medical Journal of Peking Union Medical College Hospital, 2025, 16(1): 83-89. DOI: 10.12290/xhyxzz.2024-0315 |
With the rapid development of the interdisciplinary area of artificial intelligence and medicine, large language model (LLM) has been widely used in the fields such as diagnosis and treatment, medicine, and healthcare. LLM has unique advantages in the field of traditional Chinese medicine (TCM), such as high consistency with the "Four Diagnostic Methods", perfect combination of natural language and self-supervised learning in TCM, the ability to adapt to the characteristics TCM formulas, and the assistance in TCM diagnosis and treatment. At present, various LLM models have been developed, including the "Qihuang Ask Big Model" and the Digital Traditional Chinese Medicine Big Model "GLM-130B", but they still face challenges such as value mismatch and medical abuse, increased demand for interpretability, lack of advanced technology, and domestic policy access. This article reviews the evolution of LLM, its unique advantages and applications in the field of TCM, the problems and challenges, and the future development trends, in order to providereference for the further promotion of LLM in traditional medicine.
[1] |
Thirunavukarasu A J, Ting D S J, Elangovan K, et al. Large language models in medicine[J]. Nat Med, 2023, 29(8): 1930-1940. DOI: 10.1038/s41591-023-02448-8
|
[2] |
Kim J K, Chua M, Rickard M, et al. ChatGPT and large language model (LLM) chatbots: the current state of acceptability and a proposal for guidelines on utilization in academic medicine[J]. J Pediatr Urol, 2023, 19(5): 598-604. DOI: 10.1016/j.jpurol.2023.05.018
|
[3] |
车万翔, 窦志成, 冯岩松, 等. 大模型时代的自然语言处理: 挑战、机遇与发展[J]. 中国科学: 信息科学, 2023, 53(9): 1645-1687.
Che W X, Dou Z C, Feng Y S, et al. Towards a comprehensive understanding of the impact of large language models on natural language processing: challenges, opportunities and future directions[J]. Sci Sin (Informationis), 2023, 53(9): 1645-1687.
|
[4] |
倪凌. 基于双向长短期记忆网络的医院电子病历数据挖掘[J]. 计算机应用与软件, 2023, 40(6): 70-76. DOI: 10.3969/j.issn.1000-386x.2023.06.012
Ni L. Data mining for electronic medical records of hospital based on bidirectional long short term memory network[J]. Comput Appl Softw, 2023, 40(6): 70-76. DOI: 10.3969/j.issn.1000-386x.2023.06.012
|
[5] |
Shah N H, Entwistle D, Pfeffer M A. Creation and adoption of large language models in medicine[J]. JAMA, 2023, 330(9): 866-869. DOI: 10.1001/jama.2023.14217
|
[6] |
Rao A, Kim J, Kamineni M, et al. Evaluating ChatGPT as an adjunct for radiologic decision-making[J/OL]. medRxiv: 2023.02.02.23285399[2024-03- ]. https://doi.org/10.1101/2023.02.02.23285399.
|
[7] |
Choi H S, Song J Y, Shin K H, et al. Developing prompts from large language model for extracting clinical information from pathology and ultrasound reports in breast cancer[J]. Radiat Oncol J, 2023, 41(3): 209-216. DOI: 10.3857/roj.2023.00633
|
[8] |
Sezgin E, Chekeni F, Lee J, et al. Clinical accuracy of large language models and google search responses to postpartum depression questions: cross-sectional study[J]. J Med Internet Res, 2023, 25: e49240. DOI: 10.2196/49240
|
[9] |
Mori Y, Izumiyama T, Kanabuchi R, et al. Large language model may assist diagnosis of SAPHO syndrome by bone scintigraphy[J]. Mod Rheumatol, 2024, 34(5): 1043-1046. DOI: 10.1093/mr/road115
|
[10] |
Rampton V, Ko A. Robots, radiologists, and results[J]. BMJ, 2022, 379: 2853.
|
[11] |
Alberts I L, Mercolli L, Pyka T, et al. Large language models (LLM) and ChatGPT: What will the impact on nuclear medicine be?[J]. Eur J Nucl Med Mol Imaging, 2023, 50(6): 1549-1552. DOI: 10.1007/s00259-023-06172-w
|
[12] |
Xiao D, Meyers P, Upperman J S, et al. Revolutionizing healthcare with ChatGPT: an early exploration of an AI language model's impact on medicine at large and its role in pediatric surgery[J]. J Pediatr Surg, 2023, 58(12): 2410-2415. DOI: 10.1016/j.jpedsurg.2023.07.008
|
[13] |
Cascella M, Montomoli J, Bellini V, et al. Evaluating the feasibility of ChatGPT in healthcare: an analysis of multiple clinical and research scenarios[J]. J Med Syst, 2023, 47(1): 33. DOI: 10.1007/s10916-023-01925-4
|
[14] |
杨涛, 王欣宇, 朱垚, 等. 大语言模型驱动的中医智能诊疗研究思路与方法[J]. 南京中医药大学学报, 2023, 39(10): 967-971.
Yang T, Wang X Y, Zhu Y, et al. Research ideas and methods of intelligent diagnosis and treatment of traditional Chinese medicine driven by large language model[J]. J Nanjing Univ Tradit Chin Med, 2023, 39(10): 967-971.
|
[15] |
王泰一, 靳擎, 范梦月, 等. GPT还是GLM? 大模型应用于中医药现代化的机遇与挑战[J]. 中国药理学与毒理学杂志, 2023, 37(增刊1): 5-9.
Wang T Y, Jin Q, Fan M Y, et al. GPT or GLM? Opportunities and challenges of applying large-scale models to the modernization of traditional Chinese medicine[J]. Chin J Pharmacol Toxicol, 2023, 37(S1): 5-9.
|
[16] |
Abramson J, Adler J, Dunger J, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3[J]. Nature, 2024, 630(8016): 493-500. DOI: 10.1038/s41586-024-07487-w
|
[17] |
Pei Q Z, Wu L J, Gao K Y, et al. Leveraging biomolecule and natural language through multi-modal learning: a survey[DB/OL]. (2024-03-25)[ 2024-04-05]. https://arxiv.org/abs/2403.01528.
|
[18] |
Cai Z L, Zhao Z, Ma Q, et al. Midline and off-midline wound closure methods after surgical treatment for pilonidal sinus[J]. Cochrane Database Syst Rev, 2024, 1(1): CD015213.
|
[19] |
Filiberto A C, Leeds I L, Loftus T J. Editorial: machine learning in clinical decision-making[J]. Front Digit Health, 2021, 3: 784495. DOI: 10.3389/fdgth.2021.784495
|
[20] |
Milne-Ives M, de Cock C, Lim E, et al. The effectiveness of artificial intelligence conversational agents in health care: systematic review[J]. J Med Internet Res, 2020, 22(10): e20346. DOI: 10.2196/20346
|
[21] |
Grünebaum A, Chervenak J, Pollet S L, et al. The exciting potential for ChatGPT in obstetrics and gynecology[J]. Am J Obstet Gynecol, 2023, 228(6): 696-705. DOI: 10.1016/j.ajog.2023.03.009
|
[22] |
Jeblick K, Schachtner B, Dexl J, et al. ChatGPT makes medicine easy to swallow: an exploratory case study on simplified radiology reports[J]. Eur Radiol, 2024, 34(5): 2817-2825.
|
[23] |
陈益. 基于大语言模型的用药风险识别方法、装置及存储介质: CN202311237870.6[P]. 2023-10-31.
Chen Y. Drug risk identification method, device, and storage medium based on big language model: CN202311237870.6[P]. 2023-10-31.
|
[24] |
王欣宇, 杨涛, 胡孔法. 基于大语言预训练模型的中医个性化处方推荐研究[J]. 中华中医药学刊, 2024, 42(4): 15-18.
Wang X Y, Yang T, Hu K F. Research on personalized prescription recommendation of traditional Chinese medicine based on large language pre-training model[J]. Chin Arch Tradit Chin Med, 2024, 42(4): 15-18.
|
[25] |
Singhal K, Azizi S, Tu T, et al. Large language models encode clinical knowledge[J]. Nature, 2023, 620(7972): 172-180. DOI: 10.1038/s41586-023-06291-2
|
[26] |
Chen S, Kann B H, Foote M B, et al. Use of artificial intelligence chatbots for cancer treatment information[J]. JAMA Oncol, 2023, 9(10): 1459-1462. DOI: 10.1001/jamaoncol.2023.2954
|
[27] |
Singh C, Askari A, Caruana R, et al. Augmenting interpretable models with large language models during training[J]. Nat Commun, 2023, 14(1): 7913. DOI: 10.1038/s41467-023-43713-1
|
[28] |
Meskó B. The impact of multimodal large language models on health care's future[J]. J Med Internet Res, 2023, 25: e52865. DOI: 10.2196/52865
|
[29] |
Wang B R, Gao Z L, Lin Z K, et al. A disease-prediction protocol integrating triage priority and BERT-Based transfer learning for intelligent triage[J]. Bioengineering (Basel), 2023, 10(4): 420. DOI: 10.3390/bioengineering10040420
|
[30] |
Olang O, Mohseni S, Shahabinezhad A, et al. Artificial intelligence-based models for prediction of mortality in ICU patients: a scoping review[J/OL ]. J Intensive Care Med: 8850666241277134[2024-04-08]. https://pubmed.ncbi.nlm.nih.gov/39150821/.
|
[31] |
Rasmy L, Xiang Y, Xie Z Q, et al. Med-BERT: pretrained contextualized embeddings on large-scale structured electronic health records for disease prediction[J]. NPJ Digit Med, 2021, 4(1): 86. DOI: 10.1038/s41746-021-00455-y
|
[32] |
Ning Z W, Wu J Y, Ding Y D, et al. BertNDA: a model based on Graph-Bert and multi-scale information fusion for ncRNA-disease association prediction[J]. IEEE J Biomed Health Inform, 2023, 27(11): 5655-5664. DOI: 10.1109/JBHI.2023.3311808
|
[33] |
宋勇刚, 张敏. 数字技术在中医药科技创新中的应用及未来发展趋势[J]. 中国社会医学杂志, 2024, 41(4): 384-387.
Song Y G, Zhang M. The application and future develop-ment trends of digitalization in traditional Chinese medicine technology innovation[J]. Chin J Soc Med, 2024, 41(4): 384-387.
|
[34] |
姚常房, 张磊. 中医药高质量发展之路越走越宽[N]. 健康报, 2024-03-11(01).
Yao C F, Zhang L. The road to high-quality development of traditional Chinese medicine is becoming wider and wider[N]. Health News, 2024-03-11(01).
|
[35] |
张闽. 中医药传承创新与科技赋能[J]. 健康中国观察, 2024(3): 53-56.
Zhang M. Traditional Chinese medicine inheritance, innovation, and technological empowerment[J]. Healthy China Obs, 2024(3): 53-56.
|
1. |
陆承双,楼步青,曾宇平,王国,傅昊阳. 联邦学习框架下中医药数据要素传承创新策略研究. 中国卫生事业管理. 2025(01): 96-100 .
![]() |