Citation: | SHEN Jing, CHEN Wanqi, HOU Xiaorong, QIU Jie. Current Status and Prospects of Radiation Therapy Guided by Optical Surface Monitoring Technology[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 135-140. DOI: 10.12290/xhyxzz.2023-0287 |
[1] |
D'Ambrosio D J, Bayouth J, Chetty I J, et al. Continuous localization technologies for radiotherapy delivery: report of the American Society for Radiation Oncology Emerging Technology Committee[J]. Pract Radiat Oncol, 2012, 2(2): 145-150. DOI: 10.1016/j.prro.2011.10.005
|
[2] |
Fallatah A, Bolic M, MacPherson M, et al. Monitoring respiratory motion during VMAT treatment delivery using ultra-wideband radar[J]. Sensors (Basel), 2022, 22(6): 2287. DOI: 10.3390/s22062287
|
[3] |
Dong P, Lee P, Ruan D, et al. 4π noncoplanar liver SBRT: a novel delivery technique[J]. Int J Radiat Oncol Biol Phys, 2013, 85(5): 1360-1366. DOI: 10.1016/j.ijrobp.2012.09.028
|
[4] |
王宇, 唐斌, 王相飞, 等. 光学体表引导技术在放射治疗中的应用进展[J]. 肿瘤预防与治疗, 2023, 36(1): 75-81.
Wang Y, Tang B, Wang X F, et al. Advances in application of optical surface guidance in radiotherapy[J]. J Cancer Control Treat, 2023, 36(1): 75-81.
|
[5] |
Rwigema J C M, Lamiman K, Reznik R S, et al. Palliative radiation therapy for superior vena cava syndrome in metastatic Wilms tumor using 10XFFF and 3D surface imaging to avoid anesthesia in a pediatric patient-a teaching case[J]. Adv Radiat Oncol, 2017, 2(1): 101-104. DOI: 10.1016/j.adro.2016.12.007
|
[6] |
Gilles M, Fayad H, Miglierini P, et al. Patient positioning in radiotherapy based on surface imaging using time of flight cameras[J]. Med Phys, 2016, 43(8 Part 1): 4833-4841.
|
[7] |
Via R, Fassi A, Fattori G, et al. Optical eye tracking system for real-time noninvasive tumor localization in external beam radiotherapy[J]. Med Phys, 2015, 42(5): 2194-2202. DOI: 10.1118/1.4915921
|
[8] |
Wiant D B, Wentworth S, Maurer J M, et al. Surface imaging-based analysis of intrafraction motion for breast radiotherapy patients[J]. J Appl Clin Med Phys, 2014, 15(6): 147-159. DOI: 10.1120/jacmp.v15i6.4957
|
[9] |
Gopan O, Wu Q W. Evaluation of the accuracy of a 3D surface imaging system for patient setup in head and neck cancer radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2012, 84(2): 547-552. DOI: 10.1016/j.ijrobp.2011.12.004
|
[10] |
Schönecker S, Walter F, Freislederer P, et al. Treatment planning and evaluation of gated radiotherapy in left-sided breast cancer patients using the CatalystTM/SentinelTM system for deep inspiration breath-hold (DIBH)[J]. Radiat Oncol, 2016, 11(1): 143. DOI: 10.1186/s13014-016-0716-5
|
[11] |
Lehmann J, Standen T S, Kaur G, et al. Methodology of thermal drift measurements for surface guided radiation therapy systems and clinical impact assessment illustrated on the C-rad Catalyst+ HD system[J]. Tech Innov Patient Support Radiat Oncol, 2022, 21: 58-63. DOI: 10.1016/j.tipsro.2022.02.005
|
[12] |
Al-Hallaq H A, Cerviño L, Gutierrez A N, et al. AAPM task group report 302: surface-guided radiotherapy[J]. Med Phys, 2022, 49(4): e82-e112.
|
[13] |
Kügele M, Mannerberg A, Nørring Bekke S, et al. Surface guided radiotherapy (SGRT) improves breast cancer patient setup accuracy[J]. J Appl Clin Med Phys, 2019, 20(9): 61-68. DOI: 10.1002/acm2.12700
|
[14] |
Crop F, Pasquier D, Baczkiewic A, et al. Surface imaging, laser positioning or volumetric imaging for breast cancer with nodal involvement treated by helical TomoTherapy[J]. J Appl Clin Med Phys, 2016, 17(5): 200-211. DOI: 10.1120/jacmp.v17i5.6041
|
[15] |
Swinnen A C C, Öllers M C, Loon Ong C, et al. The potential of an optical surface tracking system in non-coplanar single isocenter treatments of multiple brain metastases[J]. J Appl Clin Med Phys, 2020, 21(6): 63-72. DOI: 10.1002/acm2.12866
|
[16] |
Wiersma R D, Tomarken S L, Grelewicz Z, et al. Spatial and temporal performance of 3D optical surface imaging for real-time head position tracking[J]. Med Phys, 2013, 40(11): 111712. DOI: 10.1118/1.4823757
|
[17] |
Cerviño L I, Detorie N, Taylor M, et al. Initial clinical experience with a frameless and maskless stereotactic radiosurgery treatment[J]. Pract Radiat Oncol, 2012, 2(1): 54-62. DOI: 10.1016/j.prro.2011.04.005
|
[18] |
Pan H, Cerviño L I, Pawlicki T, et al. Frameless, real-time, surface imaging-guided radiosurgery: clinical outcomes for brain metastases[J]. Neurosurgery, 2012, 71(4): 844-851. DOI: 10.1227/NEU.0b013e3182647ad5
|
[19] |
Leong B, Padilla L. Impact of use of optical surface imaging on initial patient setup for stereotactic body radiotherapy treatments[J]. J Appl Clin Med Phys, 2019, 20(12): 149-158. DOI: 10.1002/acm2.12779
|
[20] |
Lau S K M, Patel K, Kim T, et al. Clinical efficacy and safety of surface imaging guided radiosurgery (SIG-RS) in the treatment of benign skull base tumors[J]. J Neurooncol, 2017, 132(2): 307-312. DOI: 10.1007/s11060-017-2370-7
|
[21] |
Li G, Lovelock D M, Mechalakos J, et al. Migration from full-head mask to "open-face" mask for immobilization of patients with head and neck cancer[J]. J Appl Clin Med Phys, 2013, 14(5): 243-254. DOI: 10.1120/jacmp.v14i5.4400
|
[22] |
Lee S K, Huang S, Zhang L, et al. Accuracy of surface-guided patient setup for conventional radiotherapy of brain and nasopharynx cancer[J]. J Appl Clin Med Phys, 2021, 22(5): 48-57. DOI: 10.1002/acm2.13241
|
[23] |
Darby S C, Ewertz M, McGale P, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer[J]. N Engl J Med, 2013, 368(11): 987-998. DOI: 10.1056/NEJMoa1209825
|
[24] |
Yamauchi R, Mizuno N, Itazawa T, et al. Dosimetric evaluation of deep inspiration breath hold for left-sided breast cancer: analysis of patient-specific parameters related to heart dose reduction[J]. J Radiat Res, 2020, 61(3): 447-456. DOI: 10.1093/jrr/rraa006
|
[25] |
Schöffel P J, Harms W, Sroka-Perez G, et al. Accuracy of a commercial optical 3D surface imaging system for realignment of patients for radiotherapy of the thorax[J]. Phys Med Biol, 2007, 52(13): 3949-3963. DOI: 10.1088/0031-9155/52/13/019
|
[26] |
Boda-Heggemann J, Knopf AC, Simeonova-Chergou A, et al. Deep Inspiration Breath Hold-Based Radiation Therapy: A Clinical Review[J]. Int J Radiat Oncol Biol Phys, 2016, 94(3): 478-492. DOI: 10.1016/j.ijrobp.2015.11.049
|
[27] |
Zhao H, Williams N, Poppe M, et al. Comparison of surface guidance and target matching for image-guided accelerated partial breast irradiation (APBI)[J]. Med Phys, 2019, 46(11): 4717-4724. DOI: 10.1002/mp.13816
|
[28] |
Rossi M, Laaksomaa M, Aula A. Patient setup accuracy in DIBH radiotherapy of breast cancer with lymph node inclusion using surface tracking and image guidance[J]. Med Dosim, 2022, 47(2): 146-150. DOI: 10.1016/j.meddos.2021.12.003
|
[29] |
Keall P J, Mageras G S, Balter J M, et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76[J]. Med Phys, 2006, 33(10): 3874-3900. DOI: 10.1118/1.2349696
|
[30] |
Schaerer J, Fassi A, Riboldi M, et al. Multi-dimensional respiratory motion tracking from markerless optical surface imaging based on deformable mesh registration[J]. Phys Med Biol, 2012, 57(2): 357-373. DOI: 10.1088/0031-9155/57/2/357
|
[31] |
Krengli M, Gaiano S, Mones E, et al. Reproducibility of patient setup by surface image registration system in conformal radiotherapy of prostate cancer[J]. Radiat Oncol, 2009, 4: 9. DOI: 10.1186/1748-717X-4-9
|
[32] |
Aznar M C, Maraldo M V, Schut D A, et al. Minimizing late effects for patients with mediastinal Hodgkin lymphoma: deep inspiration breath-hold, IMRT, or both?[J]. Int J Radiat Oncol Biol Phys, 2015, 92(1): 169-174. DOI: 10.1016/j.ijrobp.2015.01.013
|
[33] |
Josipovic M, Aznar M C, Thomsen J B, et al. Deep inspiration breath hold in locally advanced lung cancer radiotherapy: validation of intrafractional geometric uncertainties in the INHALE trial[J]. Br J Radiol, 2019, 92(1104): 20190569. DOI: 10.1259/bjr.20190569
|
[34] |
Stick L B, Vogelius I R, Risum S, et al. Intrafractional fiducial marker position variations in stereotactic liver radiotherapy during voluntary deep inspiration breath-hold[J]. Br J Radiol, 2020, 93(1116): 20200859. DOI: 10.1259/bjr.20200859
|
[35] |
Gierga D P, Turcotte J C, Tong L W, et al. Analysis of setup uncertainties for extremity sarcoma patients using surface imaging[J]. Pract Radiat Oncol, 2014, 4(4): 261-266.
|
1. |
郑多林,鲍小静,张扬帆. 光学体表监测系统Move Couch功能在颅脑肿瘤调强放疗中的应用研究. 生命科学仪器. 2024(05): 1-4 .
![]() | |
2. |
崔健淳,陆维,李乾永. 体表引导自动摆位在盆腔肿瘤放疗中的临床应用价值. 中国癌症杂志. 2024(10): 966-971 .
![]() |