Citation: | LIU Yandong, DENG Qiang, ZHANG Yanjun, LI Zhongfeng, PENG Randong, GUO Tiefeng, WANG Yurong, CHEN Bo. Research Progress on Emerging Signaling Pathways Related to Muscle Bone Symbiosis[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 147-152. DOI: 10.12290/xhyxzz.2023-0277 |
[1] |
Laskou F, Patel H P, Cooper C, et al. A pas de deux of osteoporosis and sarcopenia: osteosarcopenia[J]. Climacteric, 2022, 25(1): 88-95. DOI: 10.1080/13697137.2021.1951204
|
[2] |
Inoue T, Maeda K, Satake S, et al. Osteosarcopenia, the co-existence of osteoporosis and sarcopenia, is associated with social frailty in older adults[J]. Aging Clin Exp Res, 2022, 34(3): 535-543. DOI: 10.1007/s40520-021-01968-y
|
[3] |
Azpeitia E, Balanzario E P, Wagner A. Signaling pathways have an inherent need for noise to acquire information[J]. BMC Bioinformatics, 2020, 21(1): 462. DOI: 10.1186/s12859-020-03778-x
|
[4] |
Ingham P W. Hedgehog signaling[J]. Curr Top Dev Biol, 2022, 149: 1-58.
|
[5] |
Hayes C S, Labuzan S A, Menke J A, et al. Ttc39c is upregulated during skeletal muscle atrophy and modulates ERK1/2 MAP kinase and hedgehog signaling[J]. J Cell Physiol, 2019, 234(12): 23807-23824. DOI: 10.1002/jcp.28950
|
[6] |
Gozal E, Jagadapillai R, Cai J, et al. Potential crosstalk between sonic hedgehog-WNT signaling and neurovascular molecules: implications for blood-brain barrier integrity in autism spectrum disorder[J]. J Neurochem, 2021, 159(1): 15-28. DOI: 10.1111/jnc.15460
|
[7] |
Hamilton A M, Balashova O A, Borodinsky L N. Non-canonical hedgehog signaling regulates spinal cord and muscle regeneration in Xenopus laevis larvae[J]. Elife, 2021, 10: e61804. DOI: 10.7554/eLife.61804
|
[8] |
Vicario N, Spitale F M, Tibullo D, et al. Clobetasol promotes neuromuscular plasticity in mice after motoneuronal loss via sonic hedgehog signaling, immunomodulation and metabolic rebalancing[J]. Cell Death Dis, 2021, 12(7): 625. DOI: 10.1038/s41419-021-03907-1
|
[9] |
Ohba S. Hedgehog signaling in skeletal development: roles of Indian hedgehog and the mode of its action[J]. Int J Mol Sci, 2020, 21(18): 6665. DOI: 10.3390/ijms21186665
|
[10] |
Hou H W, Xue P, Wang Y, et al. Liraglutide regulates proliferation, differentiation, and apoptosis of preosteoblasts through a signaling network of Notch/Wnt/Hedgehog signaling pathways[J]. Eur Rev Med Pharmacol Sci, 2020, 24(23): 12408-12422.
|
[11] |
Zhang L W, Fu X J, Ni L, et al. Hedgehog signaling controls bone homeostasis by regulating osteogenic/adipogenic fate of skeletal stem/progenitor cells in mice[J]. J Bone Miner Res, 2022, 37(3): 559-576.
|
[12] |
Tarulli G A, Pask A J, Renfree M B. Discrete hedgehog factor expression and action in the developing phallus[J]. Int J Mol Sci, 2020, 21(4): 1237. DOI: 10.3390/ijms21041237
|
[13] |
Williams J N, Kambrath A V, Patel R B, et al. Inhibition of CaMKK2 enhances fracture healing by stimulating Indian hedgehog signaling and accelerating endochondral ossifica-tion[J]. J Bone Miner Res, 2018, 33(5): 930-944. DOI: 10.1002/jbmr.3379
|
[14] |
Nan K, Zhang Y K, Zhang X, et al. Exosomes from miRNA-378-modified adipose-derived stem cells prevent glucocorticoid-induced osteonecrosis of the femoral head by enhancing angiogenesis and osteogenesis via targeting miR-378 negatively regulated suppressor of fused (Sufu)[J]. Stem Cell Res Ther, 2021, 12(1): 331. DOI: 10.1186/s13287-021-02390-x
|
[15] |
邓新超, 钱亮, 邹曼. 藏红花素调节Hippo-YAP信号通路抑制膝骨关节炎大鼠软骨细胞凋亡[J]. 中国骨质疏松杂志, 2023, 29(4): 538-543.
Deng X C, Qian L, Zou M. Crocin regulates Hippo YAP signal pathway and inhibits chondrocyte apoptosis in rats with knee osteoarthritis[J]. Chin J Osteoporos, 2023, 29(4): 538-543.
|
[16] |
阮凌, 马松, 谢天, 等. HIPPO通路在骨骼肌再生、结构重塑及其运动干预中的研究进展[J]. 生理科学进展, 2023, 54(1): 69-75.
Ruan L, Ma S, Xie T, et al. Research progress of the HIPPO pathway in the regeneration and structural remodeling of skeletal muscle and in exercise interventions[J]. Prog Physiol Sci, 2023, 54(1): 69-75.
|
[17] |
Setiawan I, Sanjaya A, Lesmana R, et al. Hippo pathway effectors YAP and TAZ and their association with skeletal muscle ageing[J]. J Physiol Biochem, 2021, 77(1): 63-73. DOI: 10.1007/s13105-021-00787-z
|
[18] |
Yang S F, Chen L, Wang Z Y, et al. Neutrophil extracellular traps induce abdominal aortic aneurysm formation by promoting the synthetic and proinflammatory smooth muscle cell phenotype via Hippo-YAP pathway[J]. Transl Res, 2023, 255: 85-96. DOI: 10.1016/j.trsl.2022.11.010
|
[19] |
Yang W L, Lu X Y, Zhang T, et al. TAZ inhibits osteoclastogenesis by attenuating TAK1/NF-κB signaling[J]. Bone Res, 2021, 9(1): 33. DOI: 10.1038/s41413-021-00151-3
|
[20] |
Xiong J H, Almeida M, O'Brien C A. The YAP/TAZ transcriptional co-activators have opposing effects at different stages of osteoblast differentiation[J]. Bone, 2018, 112: 1-9. DOI: 10.1016/j.bone.2018.04.001
|
[21] |
Zarka M, Haÿ E, Cohen-Solal M. YAP/TAZ in bone and cartilage biology[J]. Front Cell Dev Biol, 2022, 9: 788773. DOI: 10.3389/fcell.2021.788773
|
[22] |
Yu B, Huo L H, Liu Y S, et al. PGC-1α controls skeletal stem cell fate and bone-fat balance in osteoporosis and skeletal aging by inducing TAZ[J]. Cell Stem Cell, 2018, 23(2): 193-209. e5. DOI: 10.1016/j.stem.2018.06.009
|
[23] |
Li L, Zhou X, Zhang J T, et al. Exosomal miR-186 derived from BMSCs promote osteogenesis through hippo signaling pathway in postmenopausal osteoporosis[J]. J Orthop Surg Res, 2021, 16(1): 23. DOI: 10.1186/s13018-020-02160-0
|
[24] |
邵家豪, 李超, 张贤. 骨质疏松中的自噬相关信号通路[J]. 中国骨质疏松杂志, 2021, 27(12): 1863-1867. DOI: 10.3969/j.issn.1006-7108.2021.12.026
Shao J H, Li C, Zhang X. Associated signaling pathway of autophagy in osteoporosis[J]. Chin J Osteoporos, 2021, 27(12): 1863-1867. DOI: 10.3969/j.issn.1006-7108.2021.12.026
|
[25] |
斯日古楞, 李天柱, 乌英嘎, 等. 二十碳五烯酸激活PI3K/mTOR/p70S6K通路改善快速老化小鼠肌肉功能[J]. 中国新药与临床杂志, 2021, 40(10): 713-718.
Siriguleng, Li T Z, Wu Y G, et al. Eicosapentaenoic acid improves muscle function of aging mice by activating PI3K/mTOR/p70S6K pathway[J]. Chin J New Drugs Clin Remedies, 2021, 40(10): 713-718.
|
[26] |
Chen L, Chen L L, Wan L L, et al. Matrine improves skeletal muscle atrophy by inhibiting E3 ubiquitin ligases and activating the Akt/mTOR/FoxO3α signaling pathway in C2C12 myotubes and mice[J]. Oncol Rep, 2019, 42(2): 479-494.
|
[27] |
Baraldo M, Geremia A, Pirazzini M, et al. Skeletal muscle mTORC1 regulates neuromuscular junction stability[J]. J Cachexia Sarcopenia Muscle, 2020, 11(1): 208-225. DOI: 10.1002/jcsm.12496
|
[28] |
You J S, McNally R M, Jacobs B L, et al. The role of raptor in the mechanical load-induced regulation of mTOR signaling, protein synthesis, and skeletal muscle hypertrophy[J]. FASEB J, 2019, 33(3): 4021-4034. DOI: 10.1096/fj.201801653RR
|
[29] |
Anand A, Nambirajan A, Kumar V, et al. Alterations in autophagy and mammalian target of rapamycin (mTOR) pathways mediate sarcopenia in patients with cirrhosis[J]. J Clin Exp Hepatol, 2022, 12(2): 510-518. DOI: 10.1016/j.jceh.2021.05.004
|
[30] |
Liu H L, Huang B, Xue S L, et al. Functional crosstalk between mTORC1/p70S6K pathway and heterochromatin organization in stress-induced senescence of MSCs[J]. Stem Cell Res Ther, 2020, 11(1): 279. DOI: 10.1186/s13287-020-01798-1
|
[31] |
Lee S Y, Abel E D, Long F X. Glucose metabolism induced by Bmp signaling is essential for murine skeletal development[J]. Nat Commun, 2018, 9(1): 4831. DOI: 10.1038/s41467-018-07316-5
|
[32] |
Son S M, Park S J, Stamatakou E, et al. Leucine regulates autophagy via acetylation of the mTORC1 component raptor[J]. Nat Commun, 2020, 11(1): 3148. DOI: 10.1038/s41467-020-16886-2
|
[33] |
Zhang Y, Xu S, Li K, et al. mTORC1 inhibits NF-κB/NFATc1 signaling and prevents osteoclast precursor differentiation, in vitro and in mice[J]. J Bone Miner Res, 2017, 32(9): 1829-1840. DOI: 10.1002/jbmr.3172
|
[34] |
王屿萌, 廖苾芝, 周达岸. 大鼠骨骼肌挫伤修复过程中p38 MAPK通路、炎症反应的作用[J]. 中国老年学杂志, 2021, 41(19): 4340-4344. DOI: 10.3969/j.issn.1005-9202.2021.19.056
Wang Y M, Liao B Z, Zhou D A. Analysis of the role of p38 MAPK pathway and inflammatory response in the repair of skeletal muscle contusion in rats[J]. Chin J Gerontol, 2021, 41(19): 4340-4344. DOI: 10.3969/j.issn.1005-9202.2021.19.056
|
[35] |
Bengal E, Aviram S, Hayek T. p38 MAPK in glucose metabolism of skeletal muscle: beneficial or harmful?[J]. Int J Mol Sci, 2020, 21(18): 6480. DOI: 10.3390/ijms21186480
|
[36] |
Wang M J, Yang B R, Jing X Y, et al. P2Y1R and P2Y2R: potential molecular triggers in muscle regeneration[J]. Purinergic Signal, 2023, 19(1): 305-313.
|
[37] |
Xin X P, Hou Y T, Li L N, et al. IGF-Ⅰ increases IGFBP-5 and collagen alpha1(Ⅰ) mRNAs by the MAPK pathway in rat intestinal smooth muscle cells[J]. Am J Physiol Gastrointest Liver Physiol, 2004, 286(5): G777-G783.
|
[38] |
Lee J S, Kim M E, Seon J K, et al. Bone-forming peptide-3 induces osteogenic differentiation of bone marrow stromal cells via regulation of the ERK1/2 and Smad1/5/8 pathways[J]. Stem Cell Res, 2018, 26: 28-35.
|
[39] |
张旭, 刘石磊, 齐万里. 基于网络药理学及分子对接方法探讨大豆异黄酮治疗骨质疏松的机制[J]. 中药新药与临床药理, 2023, 34(2): 214-221.
Zhang X, Liu S L, Qi W L. Exploring the mechanism of soy isoflavone in the treatment of osteoporosis based on network pharmacology and molecular docking[J]. Tradit Chin Drug Res Clin Pharmacol, 2023, 34(2): 214-221.
|
1. |
李佳乐,王礼宁,郭杨,朱弈桦,马勇. 膳食蛋白对骨骼健康影响的研究进展. 现代医药卫生. 2025(02): 468-473 .
![]() | |
2. |
黄倩如. 基于MAPK信号通路探讨渐进性抗阻训练对慢性肌肉损伤大鼠修复的效果及机制. 福建医药杂志. 2025(02): 60-64 .
![]() |