Volume 14 Issue 4
Jul.  2023
Turn off MathJax
Article Contents
SHI Yue, ZHU Bo, HUANG Yuguang. Excitatory-inhibitory Imbalance and Autism Spectrum Disorder: Mechanism and Treatment Progress[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(4): 844-849. doi: 10.12290/xhyxzz.2023-0174
Citation: SHI Yue, ZHU Bo, HUANG Yuguang. Excitatory-inhibitory Imbalance and Autism Spectrum Disorder: Mechanism and Treatment Progress[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(4): 844-849. doi: 10.12290/xhyxzz.2023-0174

Excitatory-inhibitory Imbalance and Autism Spectrum Disorder: Mechanism and Treatment Progress

doi: 10.12290/xhyxzz.2023-0174
Funds:

National High Level Hospital Clinical Research Funding 2022-PUMCH-B-119

More Information
  • Corresponding author: ZHU Bo, E-mail: zhubo@pumch.cn
  • Received Date: 2023-04-04
  • Accepted Date: 2023-05-31
  • Publish Date: 2023-07-30
  • Autism spectrum disorder (ASD) is becoming one of the fastest growing neurodevelopmen-tal disorders around the world, yet its clinical treatment still faces challenge due to the heterogeneity in etiology and symptom phenotypes. It is believed that excitatory-inhibitory (E-I) imbalance in the central nervous system may play an important role in the pathogenic mechanisms of ASD. E-I imbalances in synaptic transmission and neural circuits are frequently observed in different animal models of ASD, and the corresponding reversion normalizes the autism-like behaviors in these animals. Some E-I modulators have been tested for their therapeutic potential on ASD patients with encouraging results. This article expounds the mechanism of E-I imbalance in ASD and E-I imbalance regulators treatment progress, to provide new insights on the therapeutic targets for ASD.
  • loading
  • [1] Lord C, Elsabbagh M, Baird G, et al. Autism spectrum disorder[J]. Lancet, 2018, 392: 508-520. doi:  10.1016/S0140-6736(18)31129-2
    [2] American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5[M]. Washington, DC: American Psychiatric Association Publishing, 2013.
    [3] Zablotsky B, Black LI, Maenner MJ, et al. Prevalence and Trends of Developmental Disabilities among Children in the United States: 2009-2017[J]. Pediatrics, 2019, 144: e20190811. doi:  10.1542/peds.2019-0811
    [4] Zhou H, Xu X, Yan W, et al. Prevalence of Autism Spectrum Disorder in China: A Nationwide Multi-center Population-based Study Among Children Aged 6 to 12 Years[J]. Neurosci Bull, 2020, 36: 961-971. doi:  10.1007/s12264-020-00530-6
    [5] Rubenstein JL, Merzenich MM. Model of autism: increased ratio of excitation/inhibition in key neural systems[J]. Genes Brain Behav, 2003, 2: 255-267. doi:  10.1034/j.1601-183X.2003.00037.x
    [6] Uzunova G, Pallanti S, Hollander E. Excitatory/inhibitory imbalance in autism spectrum disorders: Implications for interventions and therapeutics[J]. World J Biol Psychiatry, 2016, 17: 174-186. doi:  10.3109/15622975.2015.1085597
    [7] Lee E, Lee J, Kim E. Excitation/Inhibition Imbalance in Animal Models of Autism Spectrum Disorders[J]. Biol Psychiatry, 2017, 81: 838-847.
    [8] Radyushkin K, Hammerschmidt K, Boretius S, et al. Neuroligin-3-deficient mice: model of a monogenic heritable form of autism with an olfactory deficit[J]. Genes Brain Behav, 2009, 8: 416-425. doi:  10.1111/j.1601-183X.2009.00487.x
    [9] Esclassan F, Francois J, Phillips KG, et al. Phenotypic characterization of nonsocial behavioral impairment in neurexin 1α knockout rats[J]. Behav Neurosci, 2015, 129: 74-85. doi:  10.1037/bne0000024
    [10] Peca J, Feliciano C, Ting JT, et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction[J]. Nature, 2011, 472: 437-442. doi:  10.1038/nature09965
    [11] Guy J, Hendrich B, Holmes M, et al. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome[J]. Nat Genet, 2001, 27: 322-326. doi:  10.1038/85899
    [12] Mcfarlane HG, Kusek GK, Yang M, et al. Autism-like behavioral phenotypes in BTBR T+tf/J mice[J]. Genes Brain Behav, 2008, 7: 152-163.
    [13] Bromley RL, Mawer G, Clayton-Smith J, et al. Autism spectrum disorders following in utero exposure to antiepile-ptic drugs[J]. Neurology, 2008, 71: 1923-1924. doi:  10.1212/01.wnl.0000339399.64213.1a
    [14] Nicolini C, Fahnestock M. The valproic acid-induced rodent model of autism[J]. Exp Neurol, 2018, 299: 217-227. doi:  10.1016/j.expneurol.2017.04.017
    [15] Hengen KB, Lambo ME, Van Hooser SD, et al. Firing rate homeostasis in visual cortex of freely behaving rodents[J]. Neuron, 2013, 80: 335-342. doi:  10.1016/j.neuron.2013.08.038
    [16] Sohal VS, Rubenstein JL. Excitation-inhibition balance as a framework for investigating mechanisms in neuropsychiatric disorders[J]. Mol Psychiatry, 2019, 24: 1248-1257. doi:  10.1038/s41380-019-0426-0
    [17] Yizhar O, Fenno LE, Prigge M, et al. Neocortical excitation/inhibition balance in information processing and social dysfunction[J]. Nature, 2011, 477: 171-178. doi:  10.1038/nature10360
    [18] Adesnik H, Scanziani M. Lateral competition for cortical space by layer-specific horizontal circuits[J]. Nature, 2010, 464: 1155-1160. doi:  10.1038/nature08935
    [19] Lee AT, Gee SM, Vogt D, et al. Pyramidal neurons in prefrontal cortex receive subtype-specific forms of excitation and inhibition[J]. Neuron, 2014, 81: 61-68. doi:  10.1016/j.neuron.2013.10.031
    [20] Pfeffer CK, Xue M, He M, et al. Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons[J]. Nat Neurosci, 2013, 16: 1068-1076. doi:  10.1038/nn.3446
    [21] Pi HJ, Hangya B, Kvitsiani D, et al. Cortical interneurons that specialize in disinhibitory control[J]. Nature, 2013, 503: 521-524. doi:  10.1038/nature12676
    [22] Richter JD, Bassell GJ, Klann E. Dysregulation and restoration of translational homeostasis in fragile X syndrome[J]. Nat Rev Neurosci, 2015, 16: 595-605. doi:  10.1038/nrn4001
    [23] Tabuchi K, Blundell J, Etherton MR, et al. A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice[J]. Science, 2007, 318: 71-76. doi:  10.1126/science.1146221
    [24] Földy C, Malenka RC, Südhof TC. Autism-associated neuroligin-3 mutations commonly disrupt tonic endocannabinoid signaling[J]. Neuron, 2013, 78: 498-509. doi:  10.1016/j.neuron.2013.02.036
    [25] Rothwell PE, Fuccillo MV, Maxeiner S, et al. Autism-associated neuroligin-3 mutations commonly impair striatal circuits to boost repetitive behaviors[J]. Cell, 2014, 158: 198-212. doi:  10.1016/j.cell.2014.04.045
    [26] Baudouin SJ, Gaudias J, Gerharz S, et al. Shared synaptic pathophysiology in syndromic and nonsyndromic rodent models of autism[J]. Science, 2012, 338: 128-132. doi:  10.1126/science.1224159
    [27] Jaramillo TC, Speed HE, Xuan Z, et al. Altered Striatal Synaptic Function and Abnormal Behaviour in Shank3 Exon4-9 Deletion Mouse Model of Autism[J]. Autism Res, 2016, 9: 350-375. doi:  10.1002/aur.1529
    [28] Duffney LJ, Zhong P, Wei J, et al. Autism-like Deficits in Shank3-Deficient Mice Are Rescued by Targeting Actin Regulators[J]. Cell Rep, 2015, 11: 1400-1413. doi:  10.1016/j.celrep.2015.04.064
    [29] Han K, Holder JL Jr, Schaaf CP, et al. SHANK3 overexpression causes manic-like behaviour with unique pharmacogenetic properties[J]. Nature, 2013, 503: 72-77. doi:  10.1038/nature12630
    [30] Kouser M, Speed HE, Dewey CM, et al. Loss of predominant Shank3 isoforms results in hippocampus-dependent impairments in behavior and synaptic transmission[J]. J Neurosci, 2013, 33: 18448-18468. doi:  10.1523/JNEUROSCI.3017-13.2013
    [31] Speed HE, Kouser M, Xuan Z, et al. Autism-Associated Insertion Mutation (InsG) of Shank3 Exon 21 Causes Impaired Synaptic Transmission and Behavioral Deficits[J]. J Neurosci, 2015, 35: 9648-9665. doi:  10.1523/JNEUROSCI.3125-14.2015
    [32] Lee J, Chung C, Ha S, et al. Shank3-mutant mice lacking exon 9 show altered excitation/inhibition balance, enhanced rearing, and spatial memory deficit[J]. Front Cell Neurosci, 2015, 9: 94.
    [33] Han S, Tai C, Jones CJ, et al. Enhancement of inhibitory neurotransmission by GABAA receptors having α2, 3-subunits ameliorates behavioral deficits in a mouse model of autism[J]. Neuron, 2014, 81: 1282-1289. doi:  10.1016/j.neuron.2014.01.016
    [34] Cellot G, Maggi L, Di Castro MA, et al. Premature changes in neuronal excitability account for hippocampal network impairment and autistic-like behavior in neonatal BTBR T+tf/J mice[J]. Sci Rep, 2016, 6: 31696. doi:  10.1038/srep31696
    [35] Cui J, Park J, Ju X, et al. General Anesthesia During Neurodevelopment Reduces Autistic Behavior in Adult BTBR Mice, a Murine Model of Autism[J]. Front Cell Neurosci, 2021, 15: 772047. doi:  10.3389/fncel.2021.772047
    [36] Banerjee A, García-Oscos F, Roychowdhury S, et al. Impairment of cortical GABAergic synaptic transmission in an environmental rat model of autism[J]. Int J Neuropsychopharmacol, 2013, 16: 1309-1318. doi:  10.1017/S1461145712001216
    [37] Kang J, Kim E. Suppression of NMDA receptor function in mice prenatally exposed to valproic acid improves social deficits and repetitive behaviors[J]. Front Mol Neurosci, 2015, 8: 17.
    [38] Rinaldi T, Kulangara K, Antoniello K, et al. Elevated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid[J]. Proc Natl Acad Sci U S A, 2007, 104: 13501-13506. doi:  10.1073/pnas.0704391104
    [39] Walcott EC, Higgins EA, Desai NS. Synaptic and intrinsic balancing during postnatal development in rat pups exposed to valproic acid in utero[J]. J Neurosci, 2011, 31: 13097-13109. doi:  10.1523/JNEUROSCI.1341-11.2011
    [40] Martin HG, Manzoni OJ. Late onset deficits in synaptic plasticity in the valproic acid rat model of autism[J]. Front Cell Neurosci, 2014, 8: 23.
    [41] Chez MG, Burton Q, Dowling T, et al. Memantine as Adjunctive Therapy in Children Diagnosed With Autistic Spectrum Disorders: An Observation of Initial Clinical Response and Maintenance Tolerability[J]. J Child Neurol, 2007, 22: 574-579. doi:  10.1177/0883073807302611
    [42] Ghaleiha A, Asadabadi M, Mohammadi MR, et al. Memantine as adjunctive treatment to risperidone in children with autistic disorder: a randomized, double-blind, placebo-controlled trial[J]. Int J Neuropsychopharmacol, 2013, 16: 783-789. doi:  10.1017/S1461145712000880
    [43] Aman MG, Findling RL, Hardan AY, et al. Safety and Efficacy of Memantine in Children with Autism: Randomized, Placebo-Controlled Study and Open-Label Extension[J]. J Child Adolesc Psychopharmacol, 2017, 27: 403-412. doi:  10.1089/cap.2015.0146
    [44] Hardan AY, Fung LK, Libove RA, et al. A randomized controlled pilot trial of oral N-acetylcysteine in children with autism[J]. Biol Psychiatry, 2012, 71: 956-961. doi:  10.1016/j.biopsych.2012.01.014
    [45] Wink LK, Adams R, Wang Z, et al. A randomized placebo-controlled pilot study of N-acetylcysteine in youth with autism spectrum disorder[J]. Mol Autism, 2016, 7: 26. doi:  10.1186/s13229-016-0088-6
    [46] Dean OM, Gray KM, Villagonzalo KA, et al. A rando-mised, double blind, placebo-controlled trial of a fixed dose of N-acetyl cysteine in children with autistic disorder[J]. Aust N Z J Psychiatry, 2017, 51: 241-249. doi:  10.1177/0004867416652735
    [47] Berry-Kravis EM, Hessl D, Rathmell B, et al. Effects of STX209 (arbaclofen) on neurobehavioral function in children and adults with fragile X syndrome: a randomized, controlled, phase 2 trial[J]. Sci Transl Med, 2012, 4: 152ra27.
    [48] Erickson CA, Veenstra-Vanderweele JM, Melmed RD, et al. STX209 (arbaclofen) for autism spectrum disorders: an 8-week open-label study[J]. J Autism Dev Disord, 2014, 44: 958-964. doi:  10.1007/s10803-013-1963-z
    [49] Veenstra-Vanderweele J, Cook EH, King BH, et al. Arbaclofen in Children and Adolescents with Autism Spectrum Disorder: A Randomized, Controlled, Phase 2 Trial[J]. Neuropsychopharmacology, 2017, 42: 1390-1398. doi:  10.1038/npp.2016.237
    [50] Parellada M, San José Cáceres A, Palmer M, et al. A Phase Ⅱ Randomized, Double-Blind, Placebo-Controlled Study of the Efficacy, Safety, and Tolerability of Arbaclofen Administered for the Treatment of Social Function in Children and Adolescents With Autism Spectrum Disorders: Study Protocol for AIMS-2-TRIALS-CT1[J]. Front Psychiatry, 2021, 12: 701729. doi:  10.3389/fpsyt.2021.701729
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (230) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return