MA Tianyu, ZHANG Debin, WANG Rui, CHENG Li. Recent Advance in SPECT Myocardial Perfusion Imaging and Their Clinical Application Values[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(4): 691-697. DOI: 10.12290/xhyxzz.2023-0172
Citation: MA Tianyu, ZHANG Debin, WANG Rui, CHENG Li. Recent Advance in SPECT Myocardial Perfusion Imaging and Their Clinical Application Values[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(4): 691-697. DOI: 10.12290/xhyxzz.2023-0172

Recent Advance in SPECT Myocardial Perfusion Imaging and Their Clinical Application Values

Funds: 

National Natural Science Foundation of China 81727807

Beijing Natural Science Foundation Z220010

Tsinghua Precision Medicine Foundation 

More Information
  • Corresponding author:

    MA Tianyu, E-mail: maty@mail.tsinghua.edu.cn

  • Received Date: April 02, 2023
  • Accepted Date: July 02, 2023
  • Available Online: July 05, 2023
  • Issue Publish Date: July 29, 2023
  • Myocardial perfusion single photon emission computed tomography (SPECT) imaging is an important routine diagnostic modality for coronary artery disease. In recent years, there have been continuous advancements in cardiac SPECT imaging instrument technology and image algorithm techniques, with a growing focus on quantitative assessment of myocardial blood flow, a research hotspot that integrates technical and clinical research. This article provides an overview of the development path of cardiac SPECT systems in terms of detector technology, system structure, collimation techniques, as well as SPECT image reconstruction algorithms and myocardial blood flow quantification methods. We briefly discuss the recent research hotspots and progress, highlighting the clinical value enhancement made possible by advancements in instrument technology.
  • [1]
    Brown JC, Gerhardt TE, Kwon E. Risk Factors For Coronary Artery Disease[M]. Treasure Island (FL): StatPearls, 2022.
    [2]
    中华人民共和国国家卫生健康委员会. 2022中国卫生健康统计年鉴[EB/OL]. (2023-05-17)[2023-06-30]. http://www.nhc.gov.cn/mohwsbwstjxxzx/tjtjnj/202305/6ef68aac6bd14c1eb9375e01a0faa1fb.shtml.
    [3]
    国家心血管病中心. 中国心血管病报告2022[M/OL]. (2022)[2023-06-30]. https://www.nccd.org.cn/News/Information/Index/1089.
    [4]
    Dewey M, Siebes M, Kachelrieβ M, et al. Clinical quantitative cardiac imaging for the assessment of myocardial ischaemia[J]. Nat Rev Cardiol, 2020, 17: 427-450. DOI: 10.1038/s41569-020-0341-8
    [5]
    Dorbala S, Ananthasubramaniam K, Armstrong IS, et al. Single Photon Emission Computed Tomography (SPECT) Myocardial Perfusion Imaging Guidelines: Instrumentation, Acquisition, Processing, and Interpretation[J]. J Nucl Cardiol, 2018, 25: 1784-1846. DOI: 10.1007/s12350-018-1283-y
    [6]
    Erlandsson K, Kacperski K, van Gramberg D, et al. Performance evaluation of D-SPECT: a novel SPECT system for nuclear cardiology[J]. Phys Med Biol, 2009, 54: 2635-2649. DOI: 10.1088/0031-9155/54/9/003
    [7]
    Hutton BF, Erlandsson K, Thielemans K. Advances in clinical molecular imaging instrumentation[J]. Clin Transl Imaging, 2018, 6: 31-45. DOI: 10.1007/s40336-018-0264-0
    [8]
    Bocher M, Blevis IM, Tsukerman L, et al. A fast cardiac gamma camera with dynamic SPECT capabilities: design, system validation and future potential[J]. Eur J Nucl Med Mol Imaging, 2010, 37: 1887-1902. DOI: 10.1007/s00259-010-1488-z
    [9]
    Slomka PJ, Berman DS, Germano G. New Cardiac Cameras: Single-Photon Emission CT and PET[J]. Semin Nucl Med, 2014, 44: 232-251. DOI: 10.1053/j.semnuclmed.2014.04.003
    [10]
    Nakajima K, Okuda K, Momose M, et al. IQ·SPECT technology and its clinical applications using multicenter normal databases[J]. Ann Nucl Med, 2017, 31: 649-659. DOI: 10.1007/s12149-017-1210-3
    [11]
    Vija AH, Malmin R, Yahil A, et al. A method for improving the efficiency of myocardial perfusion imaging using conventional SPECT and SPECT/CT imaging systems[C]. IEEE Nuclear Science Symposuim & Medical Imaging Conference, 2010.
    [12]
    Imbert L, Poussier S, Franken PR, et al. Compared Performance of High-Sensitivity Cameras Dedicated to Myocardial Perfusion SPECT: A Comprehensive Analysis of Phantom and Human Images[J]. J Nucl Med, 2012, 53: 1897. DOI: 10.2967/jnumed.112.107417
    [13]
    Chaudhari AJ, Badawi RD. Application-specific nuclear medical in vivo imaging devices[J]. Phys Med Biol, 2021, 66: 10TR01. DOI: 10.1088/1361-6560/abf275
    [14]
    Wu J, Liu C. Recent advances in cardiac SPECT instrumentation and imaging methods[J]. Phys Med Biol, 2019, 64: 06TR01. DOI: 10.1088/1361-6560/ab04de
    [15]
    Gambhir SS, Berman DS, Ziffer J, et al. A Novel High-Sensitivity Rapid-Acquisition Single-Photon Cardiac Imaging Camera[J]. J Nucl Med, 2009, 50: 635-643. DOI: 10.2967/jnumed.108.060020
    [16]
    DePuey EG. Advances in SPECT camera software and hardware: Currently available and new on the horizon[J]. J Nucl Cardiol, 2012, 19: 551-581. DOI: 10.1007/s12350-012-9544-7
    [17]
    Mao Y, Yu Z, Zeng GL. Segmented slant hole collimator for stationary cardiac SPECT: Monte Carlo simulations[J]. Med Phys, 2015, 42: 5426-5434. DOI: 10.1118/1.4928484
    [18]
    Hui L, Jing W, Si C, et al. Development of stationary dedicated cardiac SPECT with multi-pinhole collimators on a clinical scanner[C]. 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2015.
    [19]
    Ogawa K, Ichimura Y. Simulation study on a stationary data acquisition SPECT system with multi-pinhole collimators attached to a triple-head gamma camera system[J]. Ann Nucl Med, 2014, 28: 716-724. DOI: 10.1007/s12149-014-0865-2
    [20]
    Bowen JD, Huang Q, Ellin JR, et al. Design and performance evaluation of a 20-aperture multipinhole collimator for myocardial perfusion imaging applications[J]. Phys Med Biol, 2013, 58: 7209-7226. DOI: 10.1088/0031-9155/58/20/7209
    [21]
    Chang W, Ordonez CE, Liang H, et al. C-SPECT—A Clinical Cardiac SPECT/Tct Platform: Design Concepts and Performance Potential[J]. IEEE Trans Nucl Sci, 2009, 56: 2659-2671. DOI: 10.1109/TNS.2009.2028138
    [22]
    Kalluri K, Bhusal N, Shumilov D, et al. Multi-pinhole cardiac SPECT performance with hemi-ellipsoid detectors for two geometries[C]. 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2015.
    [23]
    Patton JA, Slomka PJ, Germano G, et al. Recent technologic advances in nuclear cardiology[J]. J Nucl Cardiol, 2007, 14: 501-513. DOI: 10.1016/j.nuclcard.2007.06.003
    [24]
    Acampa W, Zampella E, Assante R, et al. Quantification of myocardial perfusion reserve by CZT-SPECT: A head to head comparison with 82Rubidium PET imaging[J]. J Nucl Cardiol, 2021, 28: 2827-2839. DOI: 10.1007/s12350-020-02129-w
    [25]
    Zhang D, Lyu Z, Liu Y, et al. Characterization and assessment of projection probability density function and enhanced sampling in self-collimation SPECT[J]. IEEE Trans Med Imaging, 2023. doi: 10.1109/TMI.2023.3265874.
    [26]
    Zhang D, Zheng X, Hu Y, et al. Feasibility study of a self-collimating SPECT for fast dynamic cardiac imaging[J]. J Nucl Med, 2022, 63: 2338.
    [27]
    Qi W, Yang Y, Song C, et al. 4-D Reconstruction With Respiratory Correction for Gated Myocardial Perfusion SPECT[J]. IEEE Trans Med Imaging, 2017, 36: 1626-1635. DOI: 10.1109/TMI.2017.2690819
    [28]
    Dickson J, Ross J, Vöö S. Quantitative SPECT: the time is now[J]. EJNMMI Phys, 2019, 6: 4. DOI: 10.1186/s40658-019-0241-3
    [29]
    Miyaji N, Miwa K, Tokiwa A, et al. Phantom and clinical evaluation of bone SPECT/CT image reconstruction with xSPECT algorithm[J]. EJNMMI Res, 2020, 10: 71. DOI: 10.1186/s13550-020-00659-5
    [30]
    D'Ambrosio L, Aloj L, Chiaramida P, et al. Quantitative SPECT/CT imaging using a commercial software[J]. Phys Med: Eur J Med Phys, 2016, 32: 102-103.
    [31]
    Dickson JC, Armstrong IS, Gabiña PM, et al. EANM practice guideline for quantitative SPECT-CT[J]. Eur J Nucl Med Mol Imaging, 2023, 50: 980-995. DOI: 10.1007/s00259-022-06028-9
    [32]
    Peters SM, van der Werf NR, Segbers M, et al. Towards standardization of absolute SPECT/CT quantification: a multi-center and multi-vendor phantom study[J]. EJNMMI Phys, 2019, 6: 29. DOI: 10.1186/s40658-019-0268-5
    [33]
    Fukai S, Daisaki H, Umeda T, et al. Impact of patient body habitus on image quality and quantitative value in bone SPECT/CT[J]. Ann Nucl Med, 2022, 36: 586-595. DOI: 10.1007/s12149-022-01746-4
    [34]
    Hsu B, Hu LH, Yang BH, et al. SPECT myocardial blood flow quantitation toward clinical use: a comparative study with (13)N-Ammonia PET myocardial blood flow quantitation[J]. Eur J Nucl Med Mol Imaging, 2017, 44: 117-128. DOI: 10.1007/s00259-016-3491-5
    [35]
    Michopoulou S, O'Shaughnessy E, Thomson K, et al. Discovery Molecular Imaging Digital Ready PET/CT perfor-mance evaluation according to the NEMA NU2-2012 standard[J]. Nucl Med Commun, 2019, 40: 270-277. DOI: 10.1097/MNM.0000000000000962
    [36]
    Nudi F, Biondi-Zoccai G, Nudi A, et al. Comparative analysis between myocardial perfusion reserve and maximal ischemia score at single photon emission computed tomography with new-generation cadmium-zinc-telluride cameras[J]. J Nucl Cardiol, 2021, 28: 1072-1084. DOI: 10.1007/s12350-019-01764-2
    [37]
    Shiraishi S, Tsuda N, Sakamoto F, et al. Clinical usefulness of quantification of myocardial blood flow and flow reserve using CZT-SPECT for detecting coronary artery disease in patients with normal stress perfusion imaging[J]. J Cardiol, 2020, 75: 400-409. DOI: 10.1016/j.jjcc.2019.09.006
    [38]
    Nudi F, Biondi-Zoccai G, Nudi A, et al. Comparative analysis between myocardial perfusion reserve and maximal ischemia score at single photon emission computed tomography with new-generation cadmium-zinc-telluride cameras[J]. J Nucl Cardiol, 2021, 28: 1072-1084. DOI: 10.1007/s12350-019-01764-2
    [39]
    Fang W, Hsu B. Myocardial blood flow quantitation with the SPECT technique: Is it ready to be a substitute for PET myocardial blood flow quantitation? [J]. J Nucl Cardiol, 2022, 29: 3152-3154. DOI: 10.1007/s12350-021-02697-5
    [40]
    Giubbini R, Bertoli M, Durmo R, et al. Comparison between N13NH3-PET and 99mTc-Tetrofosmin-CZT SPECT in the evaluation of absolute myocardial blood flow and flow reserve[J]. J Nucl Cardiol, 2021, 28: 1906-1918. DOI: 10.1007/s12350-019-01939-x
    [41]
    D'Antonio A, Assante R, Zampella E, et al. Myocardial blood flow evaluation with dynamic cadmium-zinc-telluride single-photon emission computed tomography: Bright and dark sides[J]. Diagn Interv Imaging, 2023, 104: 323-329. DOI: 10.1016/j.diii.2023.02.001
    [42]
    de Souza ACDAH, Harms HJ, Martell L, et al. Accuracy and Reproducibility of Myocardial Blood Flow Quantification by Single Photon Emission Computed Tomography Imaging in Patients With Known or Suspected Coronary Artery Disease[J]. Circ Cardiovasc Imaging, 2022, 15: e013987.
    [43]
    Knott KD, Seraphim A, Augusto JB, et al. The Prognostic Significance of Quantitative Myocardial Perfusion[J]. Circulation, 2020, 141: 1282-1291.
    [44]
    Camici PG, d'Amati G, Rimoldi O. Coronary microvascular dysfunction: mechanisms and functional assessment[J]. Nat Rev Cardiol, 2015, 12: 48-62. DOI: 10.1038/nrcardio.2014.160
    [45]
    Taqueti VR, Di Carli MF. Coronary Microvascular Disease Pathogenic Mechanisms and Therapeutic Options: JACC State-of-the-Art Review[J]. J Am Coll Cardiol, 2018, 72: 2625-2641. DOI: 10.1016/j.jacc.2018.09.042
    [46]
    Maron DJ, Hochman JS, Reynolds HR, et al. Initial Invasive or Conservative Strategy for Stable Coronary Disease[J]. N Engl J Med, 2020, 382: 1395-1407. DOI: 10.1056/NEJMoa1915922
    [47]
    Ford Thomas J, Ong P, Sechtem U, et al. Assessment of Vascular Dysfunction in Patients Without Obstructive Coronary Artery Disease[J]. JACC Cardiovasc Interv, 2020, 13: 1847-1864.
    [48]
    Del Buono Marco G, Montone Rocco A, Camilli M, et al. Coronary Microvascular Dysfunction Across the Spectrum of Cardiovascular Diseases[J]. J Am Coll Cardiol, 2021, 78: 1352-1371. DOI: 10.1016/j.jacc.2021.07.042
  • Cited by

    Periodical cited type(5)

    1. 周冬梅,尹桂秀. 高海拔地区颈动脉体瘤患者的CT能谱成像研究. CT理论与应用研究. 2023(01): 81-89 .
    2. 吕丽琼,邓宏平,刘化刚,唐鹏,张颖,庄俊丽. 12例颈动脉体瘤患者的单中心手术治疗经验. 血管与腔内血管外科杂志. 2023(01): 80-83 .
    3. 刘晓兵,王冕,张杨. 颈动脉体瘤外科手术规范专家共识. 血管与腔内血管外科杂志. 2023(03): 257-264 .
    4. 浦佳希,韩同磊,杨少飞,魏小龙,杨光华,赵滨,赵志青. 颈动脉体瘤的研究及治疗进展. 中华普通外科杂志. 2023(07): 553-556 .
    5. 梁和静,王磊,曾嵘. 颈动脉体瘤围手术期颅神经损伤症状评估专家共识. 血管与腔内血管外科杂志. 2023(08): 897-904+921 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (2088) PDF downloads (176) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close