Citation: | ZHAO Hua, WANG Xiaoting, LIU Dawei. New Cognition of Organ Hemodynamics: Artery-Perfusion-Vein[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(6): 921-928. DOI: 10.12290/xhyxzz.2022-0475 |
[1] |
刘大为. 重症治疗: 群体化、个体化、器官化[J]. 中华内科杂志, 2019, 58: 336-341. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHNK200711002.htm
|
[2] |
Meng L, Wang Y, Zhang L, et al. Heterogeneity and variability in pressure autoregulation of organ blood flow: lessons learned over 100+ years[J]. Crit Care Med, 2019, 47: 436-448.
|
[3] |
Aronson S, Stafford-Smith M, Phillips-Bute B, et al. Car diothoracic Anesthesiology Research Endeavors: Intraoperative systolic blood pressure variability predicts 30-day mortality in aortocoronary bypass surgery patients[J]. Anesthesiology, 2010, 113: 305-312. DOI: 10.1097/ALN.0b013e3181e07ee9
|
[4] |
Hirsch J, De Palma G, Tsai TT, et al. Impact of intraoperative hypotension and blood pressure fluctuations on early postoperative delirium after non-cardiac surgery[J]. Br J Anaesth, 2015, 115: 418-426. DOI: 10.1093/bja/aeu458
|
[5] |
Mascha EJ, Yang D, Weiss S, et al. Intraoperative mean arterial pressure variability and 30-day mortality in patients having noncardiac surgery[J]. Anesthesiology, 2015, 123: 79-91. DOI: 10.1097/ALN.0000000000000686
|
[6] |
Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregu-lation[J]. Cerebrovasc Brain Metab Rev, 1990, 2: 161-192.
|
[7] |
Griffiths IR. Spinal cord blood flow in dogs: The effect of blood pressure[J]. J Neurol Neurosurg Psychiatry, 1973, 36: 914-920. DOI: 10.1136/jnnp.36.6.914
|
[8] |
Jeremy RW, Fletcher PJ, Thompson J. Coronary pressure-flow relations in hypertensive left ventricular hypertrophy. Comparison of intact autoregulation with physiological and pharmacological vasodilation in the dog[J]. Circ Res, 1989, 65: 224-236. DOI: 10.1161/01.RES.65.1.224
|
[9] |
Carlström M, Wilcox CS, Arendshorst WJ. Renal autoregulation in health and disease[J]. Physiol Rev, 2015, 95: 405-511. DOI: 10.1152/physrev.00042.2012
|
[10] |
Stainsby WN, Renkin EM. Autoregulation of blood flow in resting skeletal muscle[J]. Am J Physiol, 1961, 201: 117-122. DOI: 10.1152/ajplegacy.1961.201.1.117
|
[11] |
Takala J. Determinants of splanchnic blood flow[J]. Br J Anaesth, 1996, 77: 50-58. DOI: 10.1093/bja/77.1.50
|
[12] |
Kvietys PR, Miller T, Granger DN. Intrinsic control of colonic blood flow and oxygenation[J]. Am J Physiol, 1980, 238: G478-G484.
|
[13] |
Nakano M, Nomura Y, Whitman G, et al. Cerebral autoregu-lation in the operating room and intensive care unit after cardiac surgery[J]. Br J Anaesth, 2021, 126: 967-974. DOI: 10.1016/j.bja.2020.12.043
|
[14] |
Ono M, Arnaoutakis GJ, Fine DM, et al. Blood pressure excursions below the cerebral autoregulation threshold during cardiac surgery are associated with acute kidney injury[J]. Crit Care Med, 2013, 41: 464-471. DOI: 10.1097/CCM.0b013e31826ab3a1
|
[15] |
Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis compaign: international guidelines for management of sepsis and septic shock 2021[J]. Intensive Care Med, 2021, 47: 1181-1247. DOI: 10.1007/s00134-021-06506-y
|
[16] |
Aaslid R, Lindegaard KF, Sorteberg W, et al. Cerebral autoregulation dynamics in humans[J]. Stroke, 1989, 20: 45-52. DOI: 10.1161/01.STR.20.1.45
|
[17] |
Depreitere B, MeyfroidtG, Guiza F, et al. What do we mean by cerebral perfusion pressure?[J]. Acta Neurochir Suppl, 2018, 126: 201-203.
|
[18] |
Asfar P, Meziani F, Hamel JF, et al. High versus low blood-pressure target in patients with septic shock[J]. N Engl J Med, 2014, 370: 1583-1593. DOI: 10.1056/NEJMoa1312173
|
[19] |
Grenier N, Cornelis F, Le Bras Y, et al. Perfusion imaging in renal diseases[J]. Diagn Interv Imaging, 2013, 94: 1313-1322. DOI: 10.1016/j.diii.2013.08.018
|
[20] |
Beloncle F, Rousseau N, Hamel JF, et al. Determinants of Doppler-based renal resistive index in patients with septic shock: impact of hemodynamic parameters, acute kidney injury and predisposing factors[J]. Ann Intensive Care, 2019, 9: 51. DOI: 10.1186/s13613-019-0525-8
|
[21] |
Rhee CJ, Kibler KK, Easley RB, et al. Renovascular reactivity measured by near-infrared spectroscopy[J]. J Appl Physiol, 2012, 113: 307-314. DOI: 10.1152/japplphysiol.00024.2012
|
[22] |
Post EH, Vincent JL. Renal autoregulation and blood pressure management in circulatory shock[J]. Crit Care, 2018, 22: 81. DOI: 10.1186/s13054-018-1962-8
|
[23] |
Nygren A, Thoren A, Ricksten SE. Norepinephrine and intestinal mucosal perfusion in vasodilatory shock after cardiac surgery[J]. Shock, 2007, 28: 536-543. DOI: 10.1097/shk.0b013e318063e71f
|
[24] |
Hiltebrand LB, Krejci V, tenHoevel ME, et al. Redistribu-tion of microcirculatory blood flow within the intestinal wall during sepsis and general anesthesia[J]. Anesthesiology, 2003, 98: 658-669. DOI: 10.1097/00000542-200303000-00014
|
[25] |
Leithe ME, Margorien RD, Hermiller JB, et al. Relation-ship between central hemodynamics and regional blood flow in normal subjects and in patients with congestive heart failure[J]. Circulation, 1984, 69: 57-64. DOI: 10.1161/01.CIR.69.1.57
|
[26] |
Wong A, Yusuf GT, Malbrain MLNG. Future developments in the imaging of the gastrointestinal tract: the role of ultrasound[J]. Curr Opin Crit Care, 2021, 27: 147-156. DOI: 10.1097/MCC.0000000000000815
|
[27] |
Guinot PG, Abou-Arab O, Longrois D, et al. Right ventricu-lar systolic dysfunction and vena cava dilatation precede alteration of renal function in adult patients undergoing cardiac surgery: An observational study[J]. Eur J Anaesthesiol, 2015, 32: 535-542. DOI: 10.1097/EJA.0000000000000149
|
[28] |
刘大为, 王小亭, 张宏民, 等. 重症血流动力学治疗——北京共识[J]. 中华内科杂志, 2015, 54: 248-271. DOI: 10.3760/cma.j.issn.0578-1426.2015.03.021
|
[29] |
Tang WH, Kitai T. Intrarenal Venous Flow: A Window Into the Congestive Kidney Failure Phenotype of Heart Failure?[J]. JACC Heart Failure, 2016, 4: 683-686. DOI: 10.1016/j.jchf.2016.05.009
|
[30] |
Desser TS, Sze DY, Jeffrey RB. Imaging and Intervention in the Hepatic Veins[J]. AJR Am J Roentgenol, 2003, 180: 1583-1591. DOI: 10.2214/ajr.180.6.1801583
|
[31] |
Xanthopoulos A, Starling RC, Kitai T, et al. Heart Failure and Liver Disease: Cardiohepatic Interactions[J]. JACC Heart Fail, 2019, 7: 87-97. DOI: 10.1016/j.jchf.2018.10.007
|
[32] |
Pettey G, Hermansen JL, Nel S, et al. Ultrasound Hepatic Vein Ratios Are Associated With the Development of Acute Kidney Injury After Cardiac Surgery[J]. J Cardiothoracic Vasc Anesth, 2022, 36: 1326-1335. DOI: 10.1053/j.jvca.2021.07.039
|
[33] |
Eljaiek R, Cavayas YA, Rodrigue E, et al. High postoperative portal venous flow pulsatility indicates right ventricular dysfunction and predicts complications in cardiac surgery patients[J]. Br J Anaesth, 2019, 122: 206-214. DOI: 10.1016/j.bja.2018.09.028
|
[34] |
Styczynski G, Milewska A, Marczewska M, et al. Echocardiographic Correlates of Abnormal Liver Tests in Patients with Exacerbation of Chronic Heart Failure[J]. J Am Soc Echocardiogr, 2016, 29: 132-139. DOI: 10.1016/j.echo.2015.09.012
|
[35] |
Denault AY, Beaubien-Souligny W, Elmi-Sarabi M, et al. Clinical Significance of Portal Hypertension Diagnosed With Bedside Ultrasound After Cardiac Surgery[J]. Anesth Analg, 2017, 124: 1109-1115. DOI: 10.1213/ANE.0000000000001812
|
[36] |
Husain-Syed F, Birk HW, Ronco C, et al. Doppler-Derived Renal Venous Stasis Index in the Prognosis of Right Heart Failure[J]. J Am Heart Assoc, 2019, 8: e013584. DOI: 10.1161/JAHA.119.013584
|
[37] |
Beaubien-Souligny W, Denault AY. Real-Time Assessment of Renal Venous Flow by Transesophageal Echography During Cardiac Surgery[J]. A A Pract, 2019, 12: 30-32. DOI: 10.1213/XAA.0000000000000841
|
[38] |
Ter Maaten JM, Dauw J, Martens P, et al. The Effect of Decongestion on Intrarenal Venous Flow Patterns in Patients With Acute Heart Failure[J]. J Card Fail, 2021, 27: 29-34. DOI: 10.1016/j.cardfail.2020.09.003
|
[39] |
Beaubien-Souligny W, Rola P, Haycock K, et al. Quantifying systemic congestion with Point-Of-Care ultrasound: development of the venous excess ultrasound grading system[J]. Ultrasound J, 2020, 12: 16. DOI: 10.1186/s13089-020-00163-w
|
[40] |
Spiegel R, Teeter W, Sullivan S, et al. The use of venous Doppler to predict adverse kidney events in a general ICU cohort[J]. Crit Care, 2020, 24: 615. DOI: 10.1186/s13054-020-03330-6
|
[41] |
Beaubien-Souligny W, Eljaiek R, Fortier A, et al. The Association Between Pulsatile Portal Flow and Acute Kidney Injury after Cardiac Surgery: A Retrospective Cohort Study[J]. J Cardiothoracic Vasc Anesth, 2018, 32: 1780-1787. DOI: 10.1053/j.jvca.2017.11.030
|
[42] |
Bhardwaj V, Vikneswaran G, Rola P, et al. Combination of Inferior Vena Cava Diameter, Hepatic Venous Flow, and Portal Vein Pulsatility Index: Venous Excess Ultrasound Score (VEXUS Score) in Predicting Acute Kidney Injury in Patients with Cardiorenal Syndrome: A Prospective Cohort Study[J]. Indian J Crit Care Med, 2020, 24: 783-789. DOI: 10.5005/jp-journals-10071-23570
|
[1] | ZHANG Hongmin, CHEN Xiukai, WANG Xiaoting, LIU Dawei, CHAI Wenzhao. Peak Value of Central Venous Pressure and Acute Kidney Injury in Cardiac Patients After Cardiopulmonary Bypass Surgery[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(6): 1005-1011. DOI: 10.12290/xhyxzz.2022-0448 |
[2] | ZHOU Jingwei, ZHANG Zimin, GU Hao, CHEN Hui, HU Li, LIU Hongyuan, XU Zi'an, YANG Xi, LIN Xiaoxi. Novel Real-time MRI Navigation Technology in the Treatment of Venous Malformation: A Case Report[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(3): 512-516. DOI: 10.12290/xhyxzz.2022-0194 |
[3] | Xiao-bo ZHANG, Zheng-yu JIN. Does Acute Cerebral Venous Sinus Thrombosis Require Endovascular Treatment?[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(2): 140-143. DOI: 10.3969/j.issn.1674-9081.20190271 |
[4] | Shi-liang CAO, Yi REN, Bin FENG. Aspirin:A New Choice for Prevention of Venous Thromboembolism after Arthroplasty[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(6): 639-646. DOI: 10.3969/j.issn.1674-9081.2019.06.016 |
[5] | Xin WANG, Xin-yu HONG, Jin-yu LI, Rui-jie ZHAO, Yu-qing YANG, Si-hua LIU, Xue-feng SUN, Wei-guo ZHU, Jun-ping FAN, Ju-hong SHI. Value of Padua Risk Assessment Model in Evaluating Venous Thromboembolism of Hospitalized Patients in the Department of Internal Medicine[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(3): 234-241. DOI: 10.3969/j.issn.1674-9081.2018.03.009 |
[6] | Shuai HU, Zhi-yan HAN, Xiao-jian WANG, Jing-jun HAN, De-qiang WU, Lei ZHANG, Yan-gui LIN, Jian-wen LIANG, Wen-bin WEI, Wen-lin ZHANG, Cun-fu MU, Yi WANG, Dian-yuan LI. Monitoring Value of Central Venous Oxygen Saturation, the Substitute for Mixed Venous Oxygen Saturation, in Postoperative Care of Congenital Heart Disease with Pulmonary Arterial Hypertension:a Multicenter Prospective Study[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(3): 228-233. DOI: 10.3969/j.issn.1674-9081.2018.03.008 |
[7] | Fenglin Liu, Jing Qin. From Guidelines to Practice: Analysis of Guidelines for Prevention and Management of Perioperative Venous Thrombosis in General Surgery in China[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(2): 144-149. DOI: 10.3969/j.issn.1674-9081.2018.02.008 |
[8] | Xiao-yun ZHANG, Jian-yu HAO. PTEN and Digestive Organ Fibrosis[J]. Medical Journal of Peking Union Medical College Hospital, 2017, 8(4-5): 300-304. DOI: 10.3969/j.issn.1674-9081.2017.05.020 |
[9] | Wen-da WANG, Yu ZHAO, Ping PENG, Xin-yan LIU. Deep Venous Thrombosis in First Trimester: Report of Three Cases and Literature Review[J]. Medical Journal of Peking Union Medical College Hospital, 2015, 6(5): 352-356. DOI: 10.3969/j.issn.1674-9081.2015.05.008 |