Citation: | WANG Fang, PANG Xiaolin, FAN Xinjuan. Prediction of Survival Status of Locally Advanced Rectal Cancer after Neoadjuvant Chemoradiotherapy Based on Improved Fully Convolutional Networks Model[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(4): 605-612. DOI: 10.12290/xhyxzz.2022-0159 |
[1] |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68: 394-424. DOI: 10.3322/caac.21492
|
[2] |
Burt RW, Barthel JS, Dunn KB, et al. NCCN clinical practice guidelines in oncology. Colorectal cancer screening[J]. J Natl Compr Canc Netw, 2010, 8: 8-61. DOI: 10.6004/jnccn.2010.0003
|
[3] |
Sauer R, Becker H, Hohenberger W, et al. Preoperative versus postoperative chemoradiotherapy for rectal cancer[J]. N Engl J Med, 2004, 351: 1731-1740. DOI: 10.1056/NEJMoa040694
|
[4] |
Beets-Tan RGH, Lambregts DMJ, Maas M, et al. Magnetic resonance imaging for clinical management of rectal cancer: updated recommendations from the 2016 European Society of Gastrointestinal and Abdominal Radiology (ESGAR) consensus meeting[J]. Eur Radiol, 2018, 28: 1465-1475. DOI: 10.1007/s00330-017-5026-2
|
[5] |
Hupkens BJP, Martens MH, Stoot JH, et al. Quality of life in rectal cancer patients after chemoradiation: watch-and-wait policy versus standard resection-a matched-controlled study[J]. Dis Colon Rectum, 2017, 60: 1032-1040. DOI: 10.1097/DCR.0000000000000862
|
[6] |
Cui Y, Yang X, Shi Z, et al. Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer[J]. Eur Radiol, 2019, 29: 1211-1220. DOI: 10.1007/s00330-018-5683-9
|
[7] |
Li Y, Liu W, Pei Q, et al. Predicting pathological complete response by comparing MRI-based radiomics pre-and postneoadjuvant radiotherapy for locally advanced rectal cancer[J]. Cancer Med, 2019, 8: 7244-7252. DOI: 10.1002/cam4.2636
|
[8] |
Shi L, Zhang Y, Nie KE, et al. Machine learning for prediction of chemoradiation therapy response in rectal cancer using pre-treatment and mid-radiation multi-parametric MRI[J]. Magn Reson Imaging, 2019, 61: 33-40. DOI: 10.1016/j.mri.2019.05.003
|
[9] |
Hu H, Jiang H, Wang S, et al. 3.0 T MRI IVIM-DWI for predicting the efficacy of neoadjuvant chemoradiation for locally advanced rectal cancer[J]. Abdom Radiol (NY), 2021, 46: 134-143. DOI: 10.1007/s00261-020-02594-4
|
[10] |
Martí-Bonmatí L, Alberich-Bayarri A. Imaging biomarkers: development and clinical integration[M]. Cham: Springer, 2016: 1-376.
|
[11] |
Lowekamp BC, Chen DT, Ibáñez L, et al. The design of SimpleITK[J]. Front Neuroinform, 2013, 7: 45.
|
[12] |
中华医学会放射学分会医学影像大数据与人工智能工作委员会, 中华医学会放射学分会腹部学组, 中华医学会放射学分会磁共振学组. 结直肠癌CT和MRI标注专家共识(2020)[J]. 中华放射学杂志, 2021, 55: 111-116. DOI: 10.3760/cma.j.cn112149-20200706-00894
|
[13] |
Shin HC, Roth HR, Gao M, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning[J]. IEEE Trans Med Imaging, 2016, 35: 1285-1298. DOI: 10.1109/TMI.2016.2528162
|
[14] |
Jiang X, Wang Y, Liu W, et al. Capsnet, cnn, fcn: Comparative performance evaluation for image classification[J]. Int J Mach Learn Comput, 2019, 9: 840-848. DOI: 10.18178/ijmlc.2019.9.6.881
|
[15] |
Pramanik R, Bag S. Handwritten Bangla city name word recognition using CNN-based transfer learning and FCN[J]. Neural Comput Appl, 2021, 33: 9329-9341. DOI: 10.1007/s00521-021-05693-5
|
[16] |
Sun S, Jiang B, Zheng Y, et al. A comparative study of CNN and FCN for histopathology whole slide image analysis[C]. International Conference on Image and Graphics, 2019: 558-567.
|
[17] |
Wang F, Liu H. Understanding the behaviour of contras-tive loss[C]. Proceedings of the IEEE/CVF Confer-ence on Computer Vision and Pattern Recognition, 2021: 2495-2504.
|
[18] |
Li X, Sun X, Meng Y, et al. Dice loss for data-imbalanced NLP tasks[J]. arXiv, 2019. https://doi.org/10.48550/arXiv.1911.02855.
|
[19] |
Parikh R, Mathai A, Parikh S, et al. Understanding and using sensitivity, specificity and predictive values[J]. Indian J Ophthalmol, 2008, 56: 45-50. DOI: 10.4103/0301-4738.37595
|
[20] |
Paszke A, Gross S, Massa F, et al. Pytorch: An imperative style, high-performance deep learning library[C]. Advances in Neural Information Processing Systems, 2019: 32.
|
[21] |
吴晓婷, 闫德勤. 数据降维方法分析与研究[J]. 計算機應用研究, 2009, 26: 2832-2835. https://cdmd.cnki.com.cn/Article/CDMD-10183-1014292110.htm
|
[22] |
黄铉. 特征降维技术的研究与进展[J]. 计算机科学, 2018, 45: 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA2018S1004.htm
|
[23] |
Ranstam J, Cook JA. LASSO regression[J]. J Br Surg, 2018, 105: 1348. DOI: 10.1002/bjs.10895
|
[24] |
Chauhan VK, Dahiya K, Sharma A. Problem formulations and solvers in linear SVM: a review[J]. Artif Intell Rev, 2019, 52: 803-855. DOI: 10.1007/s10462-018-9614-6
|
[25] |
Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine learning in python[J]. J Mach Learn Res, 2012 12: 2825-2830.
|
[26] |
Khan Z, Yahya N, Alsaih K, et al. Evaluation of deep neural networks for semantic segmentation of prostate in T2W MRI[J]. Sensors(Basel), 2020, 20: 3183.
|
[27] |
Ali HM, Kaiser MS, Mahmud M. Application of convolu-tional neural network in segmenting brain regions from MRI data[C]. International Conference on Brain Informatics, 2019: 136-146.
|
[28] |
Long J, Shelhamer E, Darrell T. Fully convolutional net-works for semantic segmentation[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3431-3440.
|
[29] |
Huang CM, Huang MY, Huang CW, et al. Machine Learning for Predicting Pathological Complete Response in Patients with Locally Advanced Rectal Cancer after Neoadjuvant Chemoradiotherapy[J]. Sci Rep, 2020, 10: 12555.
|
[30] |
Horvat N, Carlos Tavares Rocha C, Clemente Oliveira B, et al. Mri of rectal cancer: Tumor staging, imaging techniques, and management[J]. Radiographics, 2019, 39: 367-387. DOI: 10.1148/rg.2019180114
|
[31] |
Wang H, Hu D, Yao H, et al. Radiomics analysis of multiparametric MRI for the preoperative evaluation of patholo-gical grade in bladder cancer tumors[J]. Eur Radiol, 2019, 29: 6182-6190. DOI: 10.1007/s00330-019-06222-8
|
[1] | XU Kexin, LI Guozhuang, WU Zhihong, ZHANG Jianguo, DISCO(Deciphering Disorders Involving Scoliosis & Comorbidities) Study Group, WU Nan. Progress in Clinical Diagnosis and Management of Short Stature in Ehlers-Danlos Syndromes[J]. Medical Journal of Peking Union Medical College Hospital, 2025, 16(1): 163-170. DOI: 10.12290/xhyxzz.2024-0173 |
[2] | LIU Qixing, WANG Huogen, CIDAN Wangjiu, TUDAN Awang, YANG Meijie, PUQIONG Qiongda, YANG Xiao, PAN Hui, WANG Fengdan. Construction and Validation of A Deep Learning-based Bone Age Prediction Model for Children Living in Both Plain and Highland Regions[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(6): 1439-1446. DOI: 10.12290/xhyxzz.2023-0651 |
[3] | LIU Chang, ZHENG Yuchao, XIE Wenqian, LI Chen, LI Xiaohan. Image Recognition Method of Cervical Adenocarcinoma in Situ Based on Deep Learning[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(1): 159-167. DOI: 10.12290/xhyxzz.2022-0109 |
[4] | LI Xiaoyan, LI Chen, CHEN Haoyuan, ZHANG Yong, ZHANG Jingdong. Application and Research Progress of Artificial Intelligence in Digital Pathological Image Analysis of Colorectal Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(4): 542-548. DOI: 10.12290/xhyxzz.2022-0074 |
[5] | JIAO Yiping, WANG Xiangxue, XU Jun. Advances and Challenges in Applied Computational Pathology[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(4): 535-541. DOI: 10.12290/xhyxzz.2022-0287 |
[6] | YAN Rui, CHEN Limeng, LI Jintao, REN Fei. Research Progress of Cancer Classification Based on Deep Learning and Histopathological Images[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(5): 742-748. DOI: 10.12290/xhyxzz.2021-0452 |
[7] | LI Xirong. Multi-modal Deep Learning and Its Applications in Ophthalmic Artificial Intelligence[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(5): 602-607. DOI: 10.12290/xhyxzz.2021-0500 |
[8] | Hang-ning ZHOU, Feng-ying XIE, Zhi-guo JIANG, Jie LIU, Hong-zhong JIN, Ru-song MENG, Yong CUI. Classification of Skin Images Based on Deep Learning[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(1): 15-18. DOI: 10.3969/j.issn.1674-9081.2018.01.004 |
[9] | Li-ming XIA, Jian SHEN, Rong-guo ZHANG, Shao-kang WANG, Kuan CHEN. Application of Deep Learning in Medical Imaging Research[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(1): 10-14. DOI: 10.3969/j.issn.1674-9081.2018.01.003 |
[10] | Shuai TANG, Jie YI, Yu-guang HUANG. Cardiovascular Responses of Intubation with Shikani Seeing Optical Stylet and Macintosh Laryngoscope[J]. Medical Journal of Peking Union Medical College Hospital, 2012, 3(3): 314-317. DOI: 10.3969/j.issn.1674-9081.2012.03.015 |
1. |
石彦,张艳,阮吟,宁艳. 五育并举视域下模拟教学法在超声教学中的应用. 承德医学院学报. 2024(05): 438-441 .
![]() |