Volume 13 Issue 3
May  2022
Turn off MathJax
Article Contents
LONG Kai, CAO Pei, JI Tianjiao. Progress of Drug Controlled Release Systems for Local Anesthesia[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(3): 363-369. doi: 10.12290/xhyxzz.2022-0141
Citation: LONG Kai, CAO Pei, JI Tianjiao. Progress of Drug Controlled Release Systems for Local Anesthesia[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(3): 363-369. doi: 10.12290/xhyxzz.2022-0141

Progress of Drug Controlled Release Systems for Local Anesthesia

doi: 10.12290/xhyxzz.2022-0141
Funds:  Financial Support of CAS
More Information
  • Corresponding author: JI Tianjiao, E-mail: jitj@nanoctr.cn
  • Received Date: 2022-03-23
  • Accepted Date: 2022-04-18
  • Available Online: 2022-04-22
  • Publish Date: 2022-05-30
  • Reducing the drug administration times and prolonging the postoperative analgesia duration are important requirements of clinical local anesthesia. However, both local anesthetics currently used in the clinic and potentially new anesthetic drugs such as biological toxins have limited pharmaceutical effect. Biomaterials such as liposomes and polymeric microspheres can be designed to load local anesthetics to achieve a prolonged duration and on-demand drug release, accordingly satisfying clinical needs. In this review, we briefly summarized the recent developments in the design of drug delivery systems for controlled release of local anesthetics, and introduced the design principle, the function of several representative drug controlled release systems, and their applications in local anesthesia. We also discussed the challenges and future perspectives in this field.
  • loading
  • [1] Jung RM, Rybak M, Milner P, et al. Local anesthetics and advances in their administration-an overview[J]. J Pre-Clin Clin Res, 2017, 11: 94-101. doi:  10.26444/jpccr/75153
    [2] El-Boghdadly K, Pawa A, Chin KJ. Local anesthetic systemic toxicity: current perspectives[J]. Local Reg Anesth, 2018, 11: 35-44. doi:  10.2147/LRA.S154512
    [3] Jasinski T, Migon D, Sporysz K, et al. The Density of Different Local Anesthetic Solutions, Opioid Adjuvants and Their Clinically Used Combinations: An Experimental Study[J]. Pharmaceuticals (Basel), 2021, 14: 801. doi:  10.3390/ph14080801
    [4] Zhao C, Liu A, Santamaria CM, et al. Polymer-tetrodotoxin conjugates to induce prolonged duration local anesthesia with minimal toxicity[J]. Nat Commun, 2019, 10: 2566. doi:  10.1038/s41467-019-10296-9
    [5] Hagen NA, Cantin L, Constant J, et al. Tetrodotoxin for Moderate to Severe Cancer-Related Pain: A Multicentre, Randomized, Double-Blind, Placebo-Controlled, Parallel-Design Trial[J]. Pain Res Manag, 2017, 2017: 7212713.
    [6] Visciano P, Schirone M, Berti M, et al. Marine Biotoxins: Occurrence, Toxicity, Regulatory Limits and Reference Methods[J]. Front Microbiol, 2016, 7: 1051. doi:  10.3389/fmicb.2016.01051
    [7] Belgi A, Burnley JV, MacRaild CA, et al. Alkyne-Bridged α-Conotoxin Vc1.1 Potently Reverses Mechanical Allodynia in Neuropathic Pain Models[J]. J Med Chem, 2021, 64: 3222-3233. doi:  10.1021/acs.jmedchem.0c02151
    [8] Rwei AY, Paris JL, Wang B, et al. Ultrasound-triggered local anaesthesia[J]. Nat Biomed Eng, 2017, 1: 644-653. doi:  10.1038/s41551-017-0117-6
    [9] Zhan C, Wang W, Santamaria C, et al. Ultrasensitive Phototriggered Local Anesthesia[J]. Nano Lett, 2017, 17: 660-665. doi:  10.1021/acs.nanolett.6b03588
    [10] Richard BM, Rickert DE, Doolittle D, et al. DepoFoam Bupivacaine (EXPARELTM) is Compatible Following Lidocaine: Pharmacokinetic Study in Mini-pigs[J]. FASEB, 2011, 25: 392.
    [11] 曾慧琳, 施震, 符旭东. 布比卡因脂质体注射用悬浮液Exparel临床应用研究进展[J]. 中国新药杂志, 2014, 23: 1654-1657. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXYZ201414019.htm

    Zeng HL, Shi Z, Fu XD. Progress in clinical application of the bupivacaine liposome injectable suspension Exparel[J]. Zhongguo Xinyao Zazhi, 2014, 23: 1654-1657. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXYZ201414019.htm
    [12] Poon W, Kingston BR, Ouyang B, et al. A framework for designing delivery systems[J]. Nat Nanotechnol, 2020, 15: 819-829. doi:  10.1038/s41565-020-0759-5
    [13] Tu Z, Zhong Y, Hu H, et al. Design of therapeutic biomaterials to control inflammation[J]. Nat Rev Mater, 2022, 28: 1-18.
    [14] Surve DH, Jindal AB. Recent advances in long-acting nanoformulations for delivery of antiretroviral drugs[J]. J Control Release, 2020, 324: 379-404. doi:  10.1016/j.jconrel.2020.05.022
    [15] Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications[J]. Adv Drug Deliv Rev, 2013, 65: 36-48. doi:  10.1016/j.addr.2012.09.037
    [16] Grimaldi N, Andrade F, Segovia N, et al. Lipid-based nanovesicles for nanomedicine[J]. Chem Soc Rev, 2016, 45: 6520-6545. doi:  10.1039/C6CS00409A
    [17] Chang HI, Yeh MK. Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy[J]. Int J Nanomedicine, 2012, 7: 49-60.
    [18] McAlvin JB, Padera RF, Shankarappa SA, et al. Multivesicular liposomal bupivacaine at the sciatic nerve[J]. Biomaterials, 2014, 35: 4557-4564. doi:  10.1016/j.biomaterials.2014.02.015
    [19] Epstein-Barash H, Shichor I, Kwon AH, et al. Prolonged duration local anesthesia with minimal toxicity[J]. PNAS, 2009, 106: 7125-7130. doi:  10.1073/pnas.0900598106
    [20] Liechty WB, Kryscio DR, Slaughter BV, et al. Polymers for drug delivery systems[J]. Annu Rev Chem Biomol Eng, 2010, 1: 149-173. doi:  10.1146/annurev-chembioeng-073009-100847
    [21] D'souza AA, Shegokar R. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications[J]. Expert Opin Drug Deliv, 2016, 13: 1257-1275. doi:  10.1080/17425247.2016.1182485
    [22] Knop K, Hoogenboom R, Fischer D, et al. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives[J]. Angew Chem Int Ed Engl, 2010, 49: 6288-6308. doi:  10.1002/anie.200902672
    [23] Lü JM, Wang X, Marin-Muller C, et al. Current advances in research and clinical applications of PLGA-based nanotechnology[J]. Expert Rev Mol Diagn, 2009, 9: 325-341. doi:  10.1586/erm.09.15
    [24] Danhier F, Ansorena E, Silva JM, et al. PLGA-based nanoparticles: an overview of biomedical applications[J]. J Control Release, 2012, 161: 505-522. doi:  10.1016/j.jconrel.2012.01.043
    [25] Zhang W, Xu W, Ning C, et al. Long-acting hydrogel/microsphere composite sequentially releases dexmedetomidine and bupivacaine for prolonged synergistic analgesia[J]. Biomaterials, 2018, 181: 378-391. doi:  10.1016/j.biomaterials.2018.07.051
    [26] He Y, Qin L, Fang Y, et al. Electrospun PLGA nanomembrane: A novel formulation of extended-release bupivacaine delivery reducing postoperative pain[J]. Mat Des, 2020, 193: 108768.
    [27] Khandare J, Minko T. Polymer-drug conjugates: Progress in polymeric prodrugs[J]. Prog Polym Sci, 2006, 31: 359-397. doi:  10.1016/j.progpolymsci.2005.09.004
    [28] Gu Z, Dong Y, Xu S, et al. Molecularly Imprinted Polymer-Based Smart Prodrug Delivery System for Specific Targeting, Prolonged Retention, and Tumor Microenvironment-Trig-gered Release[J]. Angew Chem Int Ed Engl, 2021, 60: 2663-2667. doi:  10.1002/anie.202012956
    [29] Dragojevic S, Ryu JS, Raucher D. Polymer-Based Pro-drugs: Improving Tumor Targeting and the Solubility of Small Molecule Drugs in Cancer Therapy[J]. Molecules, 2015, 20: 21750-21769. doi:  10.3390/molecules201219804
    [30] Tang J, Meka AK, Theivendran S, et al. Openwork@Dendritic Mesoporous Silica Nanoparticles for Lactate Depletion and Tumor Microenvironment Regulation[J]. Angew Chem Int Ed Engl, 2020, 59: 22054-22062. doi:  10.1002/anie.202001469
    [31] Xu C, Lei C, Wang Y, et al. Dendritic Mesoporous Nanoparticles: Structure, Synthesis and Properties[J]. Angew Chem Int Ed Engl, 2022, 61: e202112752.
    [32] Ghosh D, Lee Y, Thomas S, et al. M13-templated magnetic nanoparticles for targeted in vivo imaging of prostate cancer[J]. Nat Nanotechnol, 2012, 7: 677-682. doi:  10.1038/nnano.2012.146
    [33] Wang C, Chen J, Talavage T, et al. Gold nanorod/Fe3O4 nanoparticle "nano-pearl-necklaces" for simultaneous targeting, dual-mode imaging, and photothermal ablation of cancer cells[J]. Angew Chem Int Ed Engl, 2009, 48: 2759-2763. doi:  10.1002/anie.200805282
    [34] Wu M, Zhang X, Zhang W, et al. Cancer stem cell regulated phenotypic plasticity protects metastasized cancer cells from ferroptosis[J]. Nat Commun, 2022, 13: 1371. doi:  10.1038/s41467-022-29018-9
    [35] Tsvetkov P, Coy S, Petrova B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins[J]. Science, 2022, 375: 1254-1261. doi:  10.1126/science.abf0529
    [36] Ji T, Li Y, Deng X, et al. Delivery of local anaesthetics by a self-assembled supramolecular system mimicking their interactions with a sodium channel[J]. Nat Biomed Eng, 2021, 5: 1099-1109. doi:  10.1038/s41551-021-00793-y
    [37] Liu X, Situ A, Kang Y, et al. Irinotecan Delivery by Lipid-Coated Mesoporous Silica Nanoparticles Shows Improved Efficacy and Safety over Liposomes for Pancreatic Cancer[J]. ACS Nano, 2016, 10: 2702-2715. doi:  10.1021/acsnano.5b07781
    [38] Heng PWS. Controlled release drug delivery systems[J]. Pharm Dev Technol, 2018, 23: 833. doi:  10.1080/10837450.2018.1534376
    [39] Zhan C, Santamaria CM, Wang W, et al. Long-acting liposomal corneal anesthetics[J]. Biomaterials, 2018, 181: 372-377. doi:  10.1016/j.biomaterials.2018.07.054
    [40] Weldon C, Ji T, Nguyen MT, et al. Nanoscale Bupivacaine Formulations To Enhance the Duration and Safety of Intravenous Regional Anesthesia[J]. ACS Nano, 2019, 13: 18-25. doi:  10.1021/acsnano.8b05408
    [41] Liu Q, Santamaria CM, Wei T, et al. Hollow Silica Nanoparticles Penetrate the Peripheral Nerve and Enhance the Nerve Blockade from Tetrodotoxin[J]. Nano Lett, 2018, 18: 32-37. doi:  10.1021/acs.nanolett.7b02461
    [42] Sirsi SR, Borden MA. State-of-the-art materials for ultrasound-triggered drug delivery[J]. Adv Drug Deliv Rev, 2014, 72: 3-14. doi:  10.1016/j.addr.2013.12.010
    [43] Rwei AY, Wang W, Kohane DS. Photoresponsive nanoparticles for drug delivery[J]. Nano Today, 2015, 10: 451-467. doi:  10.1016/j.nantod.2015.06.004
    [44] Lee H, Song C, Baik S, et al. Device-assisted transdermal drug delivery[J]. Adv Drug Deliv Rev, 2018, 127: 35-45. doi:  10.1016/j.addr.2017.08.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views (862) PDF downloads(154) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return