Citation: | CAO Jun, QIN Jinmei, XUE Weizhen. Recent Advances in the Pathogenesis of Coronary Microvascular Disease: The role of Inflammatory Reactions[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(6): 1057-1063. DOI: 10.12290/xhyxzz.2021-0782 |
[1] |
张运, 陈韵岱, 傅向华, 等. 冠状动脉微血管疾病诊断和治疗的中国专家共识[J]. 中国循环杂志, 2017, 32: 421-430. DOI: 10.3969/j.issn.1000-3614.2017.05.003
Zheng Y, Chen YD, Fu XH, et al. Chinese expert consensus on the diagnosis and treatment of coronary microvascular diseases[J]. Zhongguo Xunhuan Zazhi, 2017, 32: 421-430. DOI: 10.3969/j.issn.1000-3614.2017.05.003
|
[2] |
Sara JD, Widmer RJ, Matsuzawa Y, et al. Prevalence of Coronary Microvascular Dysfunction Among Patients With Chest Pain and Nonobstructive Coronary Artery Disease[J]. JACC Cardiovasc Imaging, 2015, 8: 1445-1453.
|
[3] |
Gehrie ER, Reynolds HR, Chen AY, et al. Characterization and outcomes of women and men with non-ST-segment elevation myocardial infarction and nonobstructive coronary artery disease: Results from the Can Rapid Risk Stratification of Unstable Angina Patients Suppress Adverse Outcomes with Early Implementation of the ACC/AHA Guidelines (CRUSADE) Quality Improvement Initiative[J]. Am Heart J 2009, 158: 688-694. DOI: 10.1016/j.ahj.2009.08.004
|
[4] |
Zhou W, Lee J, Leung ST, et al. Long-Term Prognosis of Patients With Coronary Microvascular Disease Using Stress Perfusion Cardiac Magnetic Resonance[J]. JACC Cardiovasc Imaging, 2021, 14: 602-611. DOI: 10.1016/j.jcmg.2020.09.034
|
[5] |
Siasos G, Tsigkou V, Zaromytidou M, et al. Role of local coronary blood flow patterns and shear stress on the development of microvascular and epicardial endothelial dysfunction and coronary plaque[J]. Curr Opin Cardiol, 2018, 33: 638-644. DOI: 10.1097/HCO.0000000000000571
|
[6] |
Niccoli G, Scalone G, Lerman A, et al. Coronary microvascular obstruction in acute myocardial infarction[J]. Eur Heart J, 2016, 37: 1024-1033. DOI: 10.1093/eurheartj/ehv484
|
[7] |
Del Buono MG, Montone RA, Camilli M, et al. Coronary Microvascular Dysfunction Across the Spectrum of Cardiovascular Diseases: JACC State-of-the-Art Review[J]. J Am Coll Cardiol, 2021, 78: 1352-1371. DOI: 10.1016/j.jacc.2021.07.042
|
[8] |
Masi S, Rizzoni D, Taddei S, et al. Assessment and pathophysiology of microvascular disease: recent progress and clinical implications[J]. Eur Heart J, 2021, 42: 2590-2604. DOI: 10.1093/eurheartj/ehaa857
|
[9] |
Gurzau D, Sitar-Taut A, Caloian B, et al. The Role of IL-6 and ET-1 in the Diagnosis of Coronary MicroVascular Disease in Women[J]. J Pers Med, 2021, 11: 965. DOI: 10.3390/jpm11100965
|
[10] |
Ovchinnikov AG, Arefieva TI, Potekhina AV, et al. The Molecular and Cellular Mechanisms Associated with a Microvascular Inflammation in the Pathogenesis of Heart Failure with Preserved Ejection Fraction[J]. Acta Naturae, 2020, 12: 40-51. DOI: 10.32607/actanaturae.11154
|
[11] |
Ligthart S, Marzi C, Aslibekyan S, et al. DNA methylation signatures of chronic low-grade inflammation are associated with complex diseases[J]. Genome Biol, 2016, 17: 255. DOI: 10.1186/s13059-016-1119-5
|
[12] |
Paulus WJ, Tschope C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation[J]. J Am Coll Cardiol, 2013, 62: 263-271. DOI: 10.1016/j.jacc.2013.02.092
|
[13] |
Furman D, Campisi J, Verdin E, et al. Chronic inflamma-tion in the etiology of disease across the life span[J]. Nat Med, 2019, 25: 1822-1832. DOI: 10.1038/s41591-019-0675-0
|
[14] |
Chae WR, Nübel J, Baumert J, et al. Association of depression and obesity with C-reactive protein in Germany: A large nationally representative study[J]. Brain Behav Immun, 2022, 103: 223-231. DOI: 10.1016/j.bbi.2022.04.024
|
[15] |
Recio-Mayoral A, Rimoldi OE, Camici PG, et al. Inflammation and microvascular dysfunction in cardiac syndrome X patients without conventional risk factors for coronary artery disease[J]. JACC Cardiovasc Imaging, 2013, 6: 660-667. DOI: 10.1016/j.jcmg.2012.12.011
|
[16] |
Bajaj NS, Osborne MT, Gupta A, et al. Coronary Microvascular Dysfunction and Cardiovascular Risk in Obese Patients[J]. J Am Coll Cardiol, 2018, 72: 707-717. DOI: 10.1016/j.jacc.2018.05.049
|
[17] |
Selthofer-Relatić K, Bošnjak I, Kibel A, et al. Obesity Related Coronary Microvascular Dysfunction: From Basic to Clinical Practice[J]. Cardiol Res Pract, 2016, 2016: 8173816.
|
[18] |
Wang GR, Zhu Y, Halushka PV, et al. Mechanism of platelet inhibition by nitric oxide: in vivo phosphorylation of thromboxane receptor by cyclic GMP-dependent protein kinase[J]. Proc Natl Acad Sci U S A, 1998, 95: 4888-4893. DOI: 10.1073/pnas.95.9.4888
|
[19] |
Wenzl FA, Ambrosini S, Mohammed SA. Inflammation in Metabolic Cardiomyopathy[J]. Front Cardiovasc Med, 2021, 8: 742178. DOI: 10.3389/fcvm.2021.742178
|
[20] |
Tong DC, Whitbourn R, MacIsaac A, et al. High-Sensitivity C-Reactive Protein Is a Predictor of Coronary Microvascular Dysfunction in Patients with Ischemic Heart Disease[J]. Front Cardiovasc Med, 2017, 4: 81.
|
[21] |
Aryan Z, Ghajar A, Faghihi-Kashani S, et al. Baseline High-Sensitivity C-Reactive Protein Predicts Macrovascular and Microvascular Complications of Type 2 Diabetes: A Population-Based Study[J]. Ann Nutr Metab, 2018, 72: 287-295. DOI: 10.1159/000488537
|
[22] |
Candela J, Wang R, White C. Microvascular Endothelial Dysfunction in Obesity Is Driven by Macrophage-Dependent Hydrogen Sulfide Depletion[J]. Arterioscler Thromb Vasc Biol, 2017, 37: 889-899. DOI: 10.1161/ATVBAHA.117.309138
|
[23] |
Tracy EP, Hughes W, Beare JE, et al. Aging-Induced Impairment of Vascular Function: Mitochondrial Redox Contributions and Physiological/Clinical Implications[J]. Antioxid Redox Signal, 2021, 35: 974-1015. DOI: 10.1089/ars.2021.0031
|
[24] |
Barkaway A, Rolas L, Joulia R, et al. Age-related changes in the local milieu of inflamed tissues cause aberrant neutrophil trafficking and subsequent remote organ damage[J]. Immunity, 2021, 54: 1494-1510. DOI: 10.1016/j.immuni.2021.04.025
|
[25] |
Nikolich-Zugich J. The twilight of immunity: emerging concepts in aging of the immune system[J]. Nat Immunol, 2018, 19: 1146.
|
[26] |
Rowe G, Tracy E, Beare JE, et al. Cell therapy rescues aging-induced beta-1 adrenergic receptor and GRK2 dysfunc-tion in the coronary microcirculation[J]. Geroscience, 2021, 44: 329-348.
|
[27] |
Manini TM, Anton SD, Beavers DP, et al. ENabling Reduction of Low-grade Inflammation in SEniors Pilot Study: Concept, Rationale, and Design[J]. J Am Geriatr Soc, 2017, 65: 1961-1968. DOI: 10.1111/jgs.14965
|
[28] |
Arora R, Van Theemsche KM, Van Remoortel S, et al. Constitutive, Basal, and β-Alanine-Mediated Activation of the Human Mas-Related G Protein-Coupled Receptor D Induces Release of the Inflammatory Cytokine IL-6 and Is Dependent on NF-κB Signaling[J]. Int J Mol Sci, 2021, 22: 13254. DOI: 10.3390/ijms222413254
|
[29] |
Calder PC. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance[J]. Biochim Biophys Acta, 2015, 1851: 469-484. DOI: 10.1016/j.bbalip.2014.08.010
|
[30] |
Teissier T, Boulanger E, Cox LS. Interconnections between Inflammageing and Immunosenescence during Ageing[J]. Cells, 2022, 11: 359. DOI: 10.3390/cells11030359
|
[31] |
Amor C, Feucht J, Leibold J, et al. Senolytic CAR T cells reverse senescence-associated pathologies[J]. Nature, 2020, 583: 127-132. DOI: 10.1038/s41586-020-2403-9
|
[32] |
Baar MP, Brandt RMC, Putavet DA, et al. Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging[J]. Cell, 2017, 169: 132-147. DOI: 10.1016/j.cell.2017.02.031
|
[33] |
Muñoz-Espín D, Rovira M, Galiana I, et al. A versatile drug delivery system targeting senescent cells[J]. EMBO Mol Med, 2018, 10: e9355.
|
[34] |
Konst RE, Guzik TJ, Kaski JC, et al. The pathogenic role of coronary microvascular dysfunction in the setting of other cardiac or systemic conditions[J]. Cardiovasc Res, 2020, 116: 817-828. DOI: 10.1093/cvr/cvaa009
|
[35] |
Kuwahata S, Hamasaki S, Ishida S, et al. Effect of uric acid on coronary microvascular endothelial function in women: association with eGFR and ADMA[J]. J Atheroscler Thromb, 2010, 17: 259-269. DOI: 10.5551/jat.1594
|
[36] |
Prasad M, Matteson EL, Herrmann J, et al. Uric Acid Is Associated With Inflammation, Coronary Microvascular Dysfunction, and Adverse Outcomes in Postmenopausal Women[J]. Hypertension, 2017, 69: 236-242. DOI: 10.1161/HYPERTENSIONAHA.116.08436
|
[37] |
Kakuta K, Dohi K, Yamamoto T, et al. Coronary Microvascular Dysfunction Restored After Surgery in Inflammatory Bowel Disease: A Prospective Observational Study[J]. J Am Heart Assoc, 2021, 10: e19125.
|
[38] |
Plazak W, Gryga K, Milewski M, et al. Association of heart structure and function abnormalities with laboratory findings in patients with systemic lupus erythematosus[J]. Lupus, 2011, 20: 936-944. DOI: 10.1177/0961203311399607
|
[39] |
Weber B, Stevens E, Barrett L. Coronary Microvascular Dysfunction in Systemic Lupus Erythematosus[J]. J Am Heart Assoc, 2021, 10: e018555. DOI: 10.1161/JAHA.120.018555
|
[40] |
Shin JI, Lee KH, Joo YH, et al. Inflammasomes and autoimmune and rheumatic diseases: A comprehensive review[J]. J Autoimmun, 2019, 103: 102299. DOI: 10.1016/j.jaut.2019.06.010
|
[41] |
Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta[J]. Mol Cell, 2002, 10: 417-426. DOI: 10.1016/S1097-2765(02)00599-3
|
[42] |
Zanatta E, Colombo C, D'Amico G, et al. Inflammation and Coronary Microvascular Dysfunction in Autoimmune Rheu-matic Diseases[J]. Int J Mol Sci, 2019, 20: 5563. DOI: 10.3390/ijms20225563
|
[43] |
He M, Liang X, He L, et al. Endothelial dysfunction in rheumatoid arthritis: the role of monocyte chemotactic protein-1-induced protein[J]. Arterioscler Thromb Vasc Biol, 2013, 33: 1384-1391. DOI: 10.1161/ATVBAHA.113.301490
|
[44] |
Zhang H, Yang K, Chen F, et al. Role of the CCL2-CCR2 axis in cardiovascular disease: Pathogenesis and clinical implications[J]. Front Immunol, 2022, 13: 975367. DOI: 10.3389/fimmu.2022.975367
|
[45] |
Jin Z, Zheng E, Sareli C, et al. Monocyte Chemotactic Protein-Induced Protein 1 (MCPIP-1): A Key Player of Host Defense and Immune Regulation[J]. Front Immunol, 2021, 12: 727861. DOI: 10.3389/fimmu.2021.727861
|
[46] |
Piaserico S, Osto E, Famoso G, et al. Long-term prognostic value of coronary flow reserve in psoriasis patients[J]. Atherosclerosis, 2019, 289: 57-63. DOI: 10.1016/j.atherosclerosis.2019.08.009
|
[47] |
Weber B, Perez-Chada LM, Divakaran S, et al. Coronary microvascular dysfunction in patients with psoriasis[J]. J Nucl Cardiol, 2020, 29: 37-42.
|
[48] |
Garshick MS, Barrett TJ, Wechter T, et al. Inflammasome Signaling and Impaired Vascular Health in Psoriasis[J]. Arterioscler Thromb Vasc Biol, 2019, 39: 787-798. DOI: 10.1161/ATVBAHA.118.312246
|
[49] |
Piaserico S, Osto E, Famoso G, et al. Treatment with tumor necrosis factor inhibitors restores coronary microvascular function in young patients with severe psoriasis[J]. Atherosclerosis, 2016, 251: 25-30. DOI: 10.1016/j.atherosclerosis.2016.05.036
|
[50] |
Lockshin B, Balagula Y, Merola JF. Interleukin 17, inflammation, and cardiovascular risk in patients with psoriasis[J]. J Am Acad Dermatol, 2018, 79: 345-352. DOI: 10.1016/j.jaad.2018.02.040
|
[51] |
Guo J, Wei X, Li Q, et al. Single-cell RNA analysis on ACE2 expression provides insights into SARS-CoV-2 potential entry into the bloodstream and heart injury[J]. J Cell Physiol, 2020, 235: 9884-9894. DOI: 10.1002/jcp.29802
|
[52] |
Rasmi Y, Rouhrazi H, Khayati-Shal E, et al. Association of endothelial dysfunction and cytotoxin-associated gene A-positive Helicobacter pylori in patients with cardiac syndrome X[J]. Biomed J, 2016, 39: 339-345. DOI: 10.1016/j.bj.2016.01.010
|
[53] |
Temesgen GB, Menon M, Gizaw ST, et al. Evaluation of Lipid Profile and Inflammatory Marker in Patients with Gastric Helicobacter pylori Infection, Ethiopia[J]. Int J Gen Med, 2022, 15: 271-278. DOI: 10.2147/IJGM.S345649
|
[54] |
Zhang DH, Yuan C, Wang BB, et al. Helicobacter pylori Infection Maybe a Risk Factor for Cardiac Syndrome X[J]. Front Cardiovasc Med, 2022, 9: 823885. DOI: 10.3389/fcvm.2022.823885
|
[55] |
Tanaka T, Matsushita M, Oka Y, et al. Effect of Chlamydia pneumoniae infection on coronary flow reserve and intimal hyperplasia after stent implantation in patients with angina pectoris[J]. Cardiol, 2001, 38: 311.
|
[56] |
Liuba P, Pesonen E, Paakkari I, et al. Acute Chlamydia pneumoniae infection causes coronary endothelial dysfunction in pigs[J]. Atherosclerosis, 2003, 167: 215-222. DOI: 10.1016/S0021-9150(03)00019-4
|
[57] |
Almeida NC, Queiroz MA, Lima SS, et al. Association of Chlamydia trachomatis, C. pneumoniae, and IL-6 and IL-8 Gene Alterations With Heart Diseases[J]. Front Immunol, 2019, 10: 87. DOI: 10.3389/fimmu.2019.00087
|
[58] |
Wagner J, Bojkova D, Shumliakivska M, et al. Increased susceptibility of human endothelial cells to infections by SARS-CoV-2 variants[J]. Basic Res Cardiol, 2021, 116: 42. DOI: 10.1007/s00395-021-00882-8
|
[59] |
Yin J, Wang S, Liu Y, et al. Coronary microvascular dys function pathophysiology in COVID-19[J]. Microcirculation, 2021, 28: e12718.
|
[60] |
Henry BM, Vikse J, Benoit S, et al. Hyperinflammation and derangement of renin-angiotensin-aldosterone system in COVID-19: A novel hypothesis for clinically suspected hypercoagulopathy and microvascular immunothrombosis[J]. Clin Chim Acta, 2020, 507: 167-173. DOI: 10.1016/j.cca.2020.04.027
|
[61] |
Cenko E, Badimon L, Bugiardini R, et al. Cardiovascular disease and COVID-19: a consensus paper from the ESC Working Group on Coronary Pathophysiology & Microcirculation, ESC Working Group on Thrombosis and the Association for Acute CardioVascular Care (ACVC), in collaboration with the European Heart Rhythm Association (EHRA)[J]. Cardiovasc Res, 2021, 117: 2705-2729. DOI: 10.1093/cvr/cvab298
|
[62] |
Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19[J]. Lancet, 2020, 395: 1417-1418 DOI: 10.1016/S0140-6736(20)30937-5
|
[63] |
Guzik TJ, Mohiddin SA, Dimarco A, et al. COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options[J]. Cardiovasc Res, 2020, 116: 1666-1687. DOI: 10.1093/cvr/cvaa106
|
[64] |
Rethy L, Feinstein MJ, Sinha A, et al. Coronary Microvascular Dysfunction in HIV: A Review[J]. J Am Heart Assoc, 2020, 9: e14018.
|
[65] |
Kristoffersen US, Wiinberg N, Petersen CL, et al. Reduction in coronary and peripheral vasomotor function in patients with HIV after initiation of antiretroviral therapy: a longitudinal study with positron emission tomography and flow-mediated dilation[J]. Nucl Med Commun, 2010, 31: 874-880. DOI: 10.1097/MNM.0b013e32833d82e6
|
[66] |
Knudsen A, Thorsteinsson K, Christensen TE, et al. Cardiac Microvascular Dysfunction in Women Living With HIV Is Associated With Cytomegalovirus Immunoglobulin G[J]. Open Forum Infec Dis, 2018, 5: ofy205. DOI: 10.1093/ofid/ofy205
|
[67] |
Leucker TM, Weiss RG, Schär M, et al. Coronary Endothelial Dysfunction Is Associated With Elevated Serum PCSK9 Levels in People With HIV Independent of Low-Density Lipoprotein Cholesterol[J]. J Am Heart Assoc, 2018, 7: e9996.
|
[68] |
Hileman CO, Funderburg NT. Inflammation, Immune Activation, and Antiretroviral Therapy in HIV[J]. Curr HIV/AIDS Rep, 2017, 14: 93-100. DOI: 10.1007/s11904-017-0356-x
|
[69] |
靳刚强. 尼可地尔治疗微血管性心绞痛的疗效及其对血管内皮功能的影响[J]. 当代医学, 2016, 22: 131-132. https://www.cnki.com.cn/Article/CJFDTOTAL-DDYI201623091.htm
Jin GQ. Effect of nicorandil on microvascular angina pectoris and its effect on vascular endothelial function[J]. Dangdai Yixue, 2016, 22: 131-132. https://www.cnki.com.cn/Article/CJFDTOTAL-DDYI201623091.htm
|
[70] |
Luo WH, Guo Y, Huang JW, et al. Do Statins Have a Positive Impact on Patients with Coronary Microvascular Dysfunction on Long-Term Clinical Outcome? A Large Retrospective Cohort Study[J]. Biomed Res Int, 2019, 2019: 4069097.
|
[71] |
Juni RP, Kuster DW, Goebel MM, et al. Cardiac Microvascular Endothelial Enhancement of Cardiomyocyte Function Is Impaired by Inflammation and Restored by Empagliflozin[J]. JACC Basic Transl Sci, 2019, 4: 575-591. DOI: 10.1016/j.jacbts.2019.04.003
|