Volume 12 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
LI Yang, WANG Liuping, HUANG Jin, FAN Xiangmin, TIAN Feng. Application of Human-Computer Interaction Technology in Ancillary Diagnosis of Nervous System Diseases: Current Situation and Prospect[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(5): 608-613. doi: 10.12290/xhyxzz.2021-0522
Citation: LI Yang, WANG Liuping, HUANG Jin, FAN Xiangmin, TIAN Feng. Application of Human-Computer Interaction Technology in Ancillary Diagnosis of Nervous System Diseases: Current Situation and Prospect[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(5): 608-613. doi: 10.12290/xhyxzz.2021-0522

Application of Human-Computer Interaction Technology in Ancillary Diagnosis of Nervous System Diseases: Current Situation and Prospect

doi: 10.12290/xhyxzz.2021-0522
More Information
  • Corresponding author: TIAN Feng  Tel: 86-10-62661572, E-mail: tianfeng@iscas.ac.cn
  • Received Date: 2021-07-09
  • Accepted Date: 2021-08-30
  • Available Online: 2021-09-15
  • Publish Date: 2021-09-30
  • With the development of human-computer interaction, how to use intelligent, natural and efficient methods to promote the development of the medical field has become a hot topic of research. Nervous system diseases have a great impact on the quality of people's daily life. Using the method of human-computer interaction for early warning and ancillary diagnosis of nervous system diseases can reduce discomfort of patients during exams and work intensity of doctors, which is of great significance to both doctors and patients. This paper discusses the application status, existing problems, future development of human-computer interaction in the ancillary diagnosis of nervous system diseases, and how to use computer technology to improve traditional medical diagnosis methods from the perspective of interaction.
  • loading
  • [1] Card SK, Moran TP, Newell A. The Psychology of Human-Computer Interaction[J]. Am J Psychol, 1983. doi:  10.2307/1422176.
    [2] Grammatikopoulou A, Grammalidis N, Bostantjopoulou S, et al. Detecting hypomimia symptoms by selfie photo analysis: for early Parkinson disease detection[C]. Pervasive Technologies Related to Assistive Environments, 2019: 517-522.
    [3] Gordon ML, Gatys LA, Guestrin C, et al. App Usage Predicts Cognitive Ability in Older Adults[C]. Human Factors in Computing Systems, 2019, 168: 1-12.
    [4] Aoe J, Fukuma R, Yanagisawa T, et al. Automatic diagnosis of neurological diseases using MEG signals with a deep neural network[J]. Sci Rep, 2019, 9: 5057. doi:  10.1038/s41598-019-41500-x
    [5] Chiuchisan I, Chiuchisan I, Geman O, et al. Tremor Measurement System for Neurological Disorders Screening[J]. Springer Cham, 2016, 633: 339-348. http://www.eed.usv.ro/idei_48/articles/SOFA_2016_paper2.pdf
    [6] Impedovo D, Pirlo G, Vessio G, et al. A Handwriting-Based Protocol for Assessing Neurodegenerative Dementia[J]. Cogn Comput, 2019, 11: 576-586. doi:  10.1007/s12559-019-09642-2
    [7] Smits EJ, Tolonen A, Cluitmans L, et al. Standardized handwriting to assess bradykinesia, micrographia and tremor in Parkinson's disease[J]. PLoS One, 2014, 9: e97614. doi:  10.1371/journal.pone.0097614
    [8] Fellows RP, Dahmen J, Cook D, et al. Multicomponent analysis of a digital Trail Making Test[J]. Clin Neuropsychol, 2017, 31: 154-167. doi:  10.1080/13854046.2016.1238510
    [9] Harbi, Zainab. Automatic interpretation of clock drawings for computerised assessment of dementia[D]. Wales: Cardiff University, 2017.
    [10] Drotár P, Mekyska J, Rektorová I, et al. Evaluation of handwriting kinematics and pressure for differential diagnosis of Parkinson's disease[J]. Artif Intell Med, 2016, 67: 39-46. doi:  10.1016/j.artmed.2016.01.004
    [11] Dahmen J, Cook D, Fellows R, et al. An analysis of a digital variant of the Trail Making Test using machine learning techniques[J]. Technol Health Care, 2017, 25: 251-264. doi:  10.3233/thc-161274
    [12] Souillard-Mandar W, Davis R, Rudin C, et al. Learning classification models of cognitive conditions from subtle behaviors in the digital Clock Drawing Test[J]. Mach Learn, 2016, 102: 393-441. doi:  10.1007/s10994-015-5529-5
    [13] Hirano M. Psycho-Acoustic Evaluation of Voice[J]. Clin Exam Voice, 1981. http://ci.nii.ac.jp/naid/10011685687
    [14] Baken RJ, Orlikoff RF. Clinical Measurement of Speech and Voice[M]. San Diego: Singular Thomson Learning, 2000.
    [15] Mekyska J, Janousova E, Gomez-Vilda P, et al. Robust and complex approach of pathological speech signal analysis[J]. Neurocomputing, 2015, 167: 94-111. doi:  10.1016/j.neucom.2015.02.085
    [16] Laaridh I, Kheder WB, Fredouille C, et al. Automatic Prediction of Speech Evaluation Metrics for Dysarthric Speech[C]. Interspeech, 2017: 1363-1366.
    [17] Kodrasi I, Bourlard H. Super-gaussianity of Speech Spectral Coefficients as a Potential Biomarker for Dysarthric Speech Detection[C]. ICASSP, 2019: 6400-6404.
    [18] Weiner J, Herff C, Schultz T. Speech-Based Detection of Alzheimer's Disease in Conversational German[C]. Interspeech, 2016: 1938-1942.
    [19] Tsanas A, Little MA, Mcsharry PE, et al. Novel Speech Signal Processing Algorithms for High-Accuracy Classifica-tion of Parkinson's Disease[J]. IEEE Trans Biomed Eng, 2012, 59: 1264-1271. doi:  10.1109/TBME.2012.2183367
    [20] Benba A, Jilbab A, Hammouch A. Voice assessments for detecting patients with neurological diseases using PCA and NPCA[J]. Inter J Speech Technol, 2017, 20: 673-683. doi:  10.1007/s10772-017-9438-9
    [21] Berus L, Klancnik S, Brezocnik M, et al. Classifying Parkinson's Disease Based on Acoustic Measures Using Artificial Neural Networks[J]. Sensors (Basel), 2018, 19: 16. doi:  10.3390/s19010016
    [22] Prakash C, Kumar R, Mittal N. Recent developments in human gait research: parameters, approaches, applications, machine learning techniques, datasets and challenges[J]. Art Int Rev, 2016, 49: 1-40. doi:  10.1007/s10462-016-9514-6
    [23] Martelli D, Aprigliano F, Agrawal SK. Gait Adjustments Against Multidirectional Waist-Pulls in Cerebellar Ataxia and Parkinson's Disease[J]. Bio Sys Rob, 2019, 21: 283-286.
    [24] 吴壮, 仲敏, 蒋旭, 等. 不同临床分期帕金森病患者的步态分析[J]. 临床神经病学杂志, 2021, 34: 169-172. doi:  10.3969/j.issn.1004-1648.2021.03.003

    Wu Z, Zhong M, Jiang X, et al. Gait analysis of patients with different stages Parkinson's disease[J]. Linchuang Shenjingbingxue Zazhi, 2021, 34: 169-172 doi:  10.3969/j.issn.1004-1648.2021.03.003
    [25] Pavone L, Pasqua G, Ricciuti P, et al. A Kinect-Based Portable Automatic Gait Analysis System-An Experimental Validation[J]. Biom J Sci Tech Res, 2019, 17: 12552-12555. http://www.researchgate.net/publication/335541156_A_Kinect-Based_Portable_Automatic_Gait_Analysis_System_An_Experimental_Validation
    [26] Yoneyama M, Kurihara Y, Watanabe K, et al. Accelerometry-based gait analysis and its application to Parkinson's disease assessment- part 2: a new measure for quantifying walking behavior[J]. IEEE Trans Neural Syst Rehabil Eng, 2013, 21: 999-1005. doi:  10.1109/TNSRE.2013.2268251
    [27] Latorre J, Llorens R, Colomer C, et al. Reliability and comparison of Kinect-based methods for estimating spatiotem-poral gait parameters of healthy and post-stroke individuals[J]. J Biomech, 2018, 72: 268-273. doi:  10.1016/j.jbiomech.2018.03.008
    [28] Ma Y, Mithraratne K, Wilson N, et al. The Validity and Reliability of a Kinect v2-Based Gait Analysis System for Children with Cerebral Palsy[J]. Sensors (Basel), 2019, 19: 1660-1676. doi:  10.3390/s19071660
    [29] Chakraborty S, Nandy A. Automatic Diagnosis of Cerebral Palsy Gait Using Computational Intelligence Techniques: A Low-Cost Multi-Sensor Approach[J]. IEEE Trans Neural Syst Rehabil Eng, 2020, 28: 2488-2496. . doi:  10.1109/TNSRE.2020.3028203
    [30] Jordan KG. Emergency EEG and continuous EEG monitoring in acute ischemic stroke[J]. J Clin Neurophysiol, 2004, 21: 341-352. http://europepmc.org/abstract/MED/15592008
    [31] Faust O, Acharya UR, Adeli H, et al. Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis[J]. Inter J Eng Res Appl, 2015, 26: 56-64.
    [32] Ahmadi A, Davoudi S, Daliri MR. Computer Aided Diagnosis System for multiple sclerosis disease based on phase to amplitude coupling in covert visual attention[J]. Comput Methods Programs Biomed, 2019, 169: 9-18. doi:  10.1016/j.cmpb.2018.11.006
    [33] Zwarts MJ, Drost G, Stegeman DF. Recent progress in the diagnostic use of surface EMG for neurological diseases[J]. J Electromyogr Kinesiol, 2000, 10: 287-291. doi:  10.1016/S1050-6411(00)00020-1
    [34] Robichaud JA, Pfann KD, Leurgans S, et al. Variability of EMG patterns: a potential neurophysiological marker of Parkinson's disease?[J]. Clin Neurophysiol, 2009, 120: 390-397. doi:  10.1016/j.clinph.2008.10.015
    [35] Das T, Ghosh A, Guha S, et al. Classification of EEG Signals for Prediction of Seizure using Multi-Feature Extraction[C]. International Conference on Electronics, 2017: 1-4.
    [36] 李洋, 黄进, 田丰, 等. 云端融合的神经系统疾病多通道辅助诊断研究[J]. 中国科学(信息科学), 2017, 47: 1164-1182. https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201709004.htm

    Li Y, Huang J, Tian F, et al. Research on the multi-modal aided neurological disease diagnosis with synergy of cloud and client[J]. Zhongguo Kexue(Xinxi Kexue), 2017, 47: 1164-1182. https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201709004.htm
    [37] Hsu C, Liu Y, Zachary K, et al. Extracting Gait Velocity and Stride Length from Surrounding Radio Signals[C]. CHI Conference on Human Factors in Computing Systems, 2017: 2116-2126.
    [38] Cirillo D, Catuara-Solarz S, Morey C, et al. Sex and gender differences and biases in artificial intelligence for biomedi-cine and healthcare[J]. NPJ Digit Med, 2020, 3: 81. doi:  10.1038/s41746-020-0288-5
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (713) PDF downloads(164) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint