[1]
|
Van de Wiele T, Van Praet JT, Marzorati M, et al. How the microbiota shapes rheumatic diseases[J]. Nat Rev Rheumatol, 2016, 12:398-411. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=288d5a2f730e4043e26c889cd3c53f01 |
[2]
|
Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464:59-65. http://www.nature.com/nature/journal/v464/n7285/full/nature08821.html |
[3]
|
Sethi V, Vitiello GA, Saxena D, et al. The Role of the Microbiome in Immunologic Development and its Implication For Pancreatic Cancer Immunotherapy[J]. Gastroenterology, 2019, 156:2097-2115.e2. https://www.ncbi.nlm.nih.gov/pubmed/30768986 |
[4]
|
Stiemsma LT, Reynolds LA, Turvey SE, et al. The hygiene hypothesis:current perspectives and future therapies[J]. Immunotargets Ther, 2015, 4:143-157. https://www.ncbi.nlm.nih.gov/pubmed/27471720 |
[5]
|
Skelly AN, Sato Y, Kearney S, et al. Mining the microbiota for microbial and metabolite-based immunotherapies[J]. Nat Rev Immunol, 2019, 19:305-323. https://www.nature.com/articles/s41577-019-0144-5 |
[6]
|
Atarashi K, Tanoue T, Ando M, et al. Th17 Cell Induction by Adhesion of Microbes to Intestinal Epithelial Cells[J]. Cell, 2015, 163:367-380. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a76f233026963bb5bed995a2c46c10ee |
[7]
|
Atarashi K, Tanoue T, Oshima K, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota[J]. Nature, 2013, 500:232-236. https://pubmed.ncbi.nlm.nih.gov/23842501/ |
[8]
|
Hevia A, Milani C, Lopez P, et al. Intestinal dysbiosis associated with systemic lupus erythematosus[J]. mBio, 2014, 5:e01548-14. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4196225/ |
[9]
|
He Z, Shao T, Li H, et al. Alterations of the gut micro-biome in Chinese patients with systemic lupus erythematosus[J]. Gut Pathog, 2016, 8:64. doi: 10.1186/s13099-016-0146-9 |
[10]
|
Li Y, Wang HF, Li X, et al. Disordered intestinal microbes are associated with the activity of Systemic Lupus Erythematosus[J]. Clin Sci (Lond), 2019, 133:821-838. https://pubmed.ncbi.nlm.nih.gov/30872359/ |
[11]
|
van der Meulen TA, Harmsen HJM, Vila AV, et al. Shared gut, but distinct oral microbiota composition in primary Sjogren's syndrome and systemic lupus erythematosus[J]. J Autoimmun, 2019, 97:77-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=01e50ac5491da52a056d587b9cb7c46a |
[12]
|
Chen B, Jia X, Xu J, et al. Proinflammatory and autoimmunogenic gut microbiome in systemic lupus erythematosus[OL]. BioRxiv, 2019. https://www.biorxiv.org/content/10.1101/621995v1. |
[13]
|
Azzouz D, Omarbekova A, Heguy A, et al. Lupus nephritis is linked to disease-activity associated expansions and immunity to a gut commensal[J]. Ann Rheum Dis, 2019, 78:947-956. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7c16c0aff71770ce6b88db4f317c5c7a |
[14]
|
Lloyd-Price J, Arze C, Ananthakrishnan AN, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases[J]. Nature, 2019, 569:655-662. https://www.nature.com/articles/s41586-019-1237-9 |
[15]
|
Breban M, Tap J, Leboime A, et al. Faecal microbiota study reveals specific dysbiosis in spondyloarthritis[J]. Ann Rheum Dis, 2017, 76:1614-1622. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a8ae61ed1b81a8726bf0d9d485799a46 |
[16]
|
Asquith M, Sternes PR, Costello ME, et al. HLA Alleles Associated With Risk of Ankylosing Spondylitis and Rheumatoid Arthritis Influence the Gut Microbiome[J]. Arthritis Rheumatol, 2019, 71:1642-1650. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/art.40917 |
[17]
|
Unni KK, Holley KE, McDuffie FC, et al. Comparative study of NZB mice under germfree and conventional conditions[J]. J Rheumatol, 1975, 2:36-44. https://www.ncbi.nlm.nih.gov/pubmed/1185733 |
[18]
|
Manfredo Vieira S, Hiltensperger M, Kumar V, et al. Translocation of a gut pathobiont drives autoimmunity in mice and humans[J]. Science, 2018, 359:1156-1161. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e7a7650e2bce61a97b363b06d6247a0a |
[19]
|
Ma Y, Xu X, Li M, et al. Gut microbiota promote the inflammatory response in the pathogenesis of systemic lupus erythematosus[J]. Mol Med, 2019, 25:35. https://pubmed.ncbi.nlm.nih.gov/31370803/ |
[20]
|
Fasano A. Leaky gut and autoimmune diseases[J]. Clin Rev Allergy Immunol, 2012, 42:71-78. |
[21]
|
Ogunrinde E, Zhou Z, Luo Z, et al. A Link Between Plasma Microbial Translocation, Microbiome, and Autoantibody Development in First-Degree Relatives of Systemic Lupus Erythematosus Patients[J]. Arthritis Rheumatol, 2019, 71:1858-1868. doi: 10.1002/art.40935 |
[22]
|
Zegarra-Ruiz DF, El Beidaq A, Iniguez AJ, et al. A Diet-Sensitive Commensal Lactobacillus Strain Mediates TLR7-Dependent Systemic Autoimmunity[J]. Cell Host Microbe, 2019, 25:113-127.e6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1e2fa041954016ac8116d977ab41e060 |
[23]
|
Schmidt TS, Hayward MR, Coelho LP, et al. Extensive transmission of microbes along the gastrointestinal tract[J]. Elife, 2019, 8. pii:e42693. https://pubmed.ncbi.nlm.nih.gov/30747106/ |
[24]
|
Correa JD, Calderaro DC, Ferreira GA, et al. Subgingival microbiota dysbiosis in systemic lupus erythematosus:association with periodontal status[J]. Microbiome, 2017, 5:34. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5359961/ |
[25]
|
焦禹豪, 陈蓓迪, 张烜.肠道菌群在天然免疫系统中的作用[J].协和医学杂志, 2019, 10:257-262. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xhyx201903013 |
[26]
|
Lopez P, de Paz B, Rodriguez-Carrio J, et al. Th17 responses and natural IgM antibodies are related to gut microbiota composition in systemic lupus erythematosus patients[J]. Sci Rep, 2016, 6:24072. https://www.nature.com/articles/srep24072 |
[27]
|
Mu Q, Cabana-Puig X, Mao J, et al. Pregnancy and lactation interfere with the response of autoimmunity to modulation of gut microbiota[J]. Microbiome, 2019, 7:105. doi: 10.1186/s40168-019-0720-8 |
[28]
|
Ansaldo E, Slayden LC, Ching KL, et al. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis[J]. Science, 2019, 364:1179-1184. https://science.sciencemag.org/content/364/6446/1179.full |
[29]
|
Li ZX, Zeng S, Wu HX, et al. The risk of systemic lupus erythematosus associated with Epstein-Barr virus infection:a systematic review and meta-analysis[J]. Clin Exp Med, 2019, 19:23-36. doi: 10.1007/s10238-018-0535-0 |
[30]
|
Ruff WE, Dehner C, Kim WJ, et al. Pathogenic Autoreactive T and B Cells Cross-React with Mimotopes Expressed by a Common Human Gut Commensal to Trigger Autoimmunity[J]. Cell Host Microbe, 2019, 26:100-113.e8. https://www.sciencedirect.com/science/article/abs/pii/S1931312819302483 |
[31]
|
Greiling TM, Dehner C, Chen X, et al. Commensal orthologs of the human autoantigen Ro60 as triggers of autoimmunity in lupus[J]. Sci Transl Med, 2018, 10. pii:eaan2306. https://www.ncbi.nlm.nih.gov/pubmed/?term=29593104 |
[32]
|
Edwards MR, Dai R, Heid B, et al. Commercial rodent diets differentially regulate autoimmune glomerulonephritis, epigenetics and microbiota in MRL/lpr mice[J]. Int Immunol, 2017, 29:263-276. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fc11af94cc19ce0d8b1ed8f113698040 |
[33]
|
Gill PA, van Zelm MC, Muir JG, et al. Review article:short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders[J]. Aliment Pharmacol Ther, 2018, 48:15-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/014860719101500301 |
[34]
|
White CA, Pone EJ, Lam T, et al. Histone deacetylase inhibitors upregulate B cell microRNAs that silence AID and Blimp-1 expression for epigenetic modulation of antibody and autoantibody responses[J]. J Immunol, 2014, 193:5933-5950. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fb6668882e9b2ef9f3167b6ae1767ee6 |
[35]
|
Tzang BS, Liu CH, Hsu KC, et al. Effects of oral Lactobacillus administration on antioxidant activities and CD4+CD25+forkhead box P3(FoxP3)+ T cells in NZB/W F1 mice[J]. Br J Nutr, 2017, 118:333-342. |
[36]
|
Hsu TC, Huang CY, Liu CH, et al. Lactobacillus paracasei GMNL-32, Lactobacillus reuteri GMNL-89 and L. reuteri GMNL-263 ameliorate hepatic injuries in lupus-prone mice[J]. Br J Nutr, 2017, 117:1066-1074. |
[37]
|
Mu Q, Zhang H, Liao X, et al. Control of lupus nephritis by changes of gut microbiota[J]. Microbiome, 2017, 5:73. https://www.ncbi.nlm.nih.gov/pubmed/28697806 |
[38]
|
Toral M, Robles-Vera I, Romero M, et al. Lactobacillus fermentum CECT5716:a novel alternative for the prevention of vascular disorders in a mouse model of systemic lupus erythematosus[J]. FASEB J, 2019, 33:10005-10018. https://www.ncbi.nlm.nih.gov/pubmed/31173526 |
[39]
|
Allegretti JR, Mullish BH, Kelly C, et al. The evolution of the use of faecal microbiota transplantation and emerging therapeutic indications[J]. Lancet, 2019, 394:420-431. https://www.sciencedirect.com/science/article/pii/S0140673619312668 |
[40]
|
张发明, 李玥.粪菌移植治疗炎症性肠病的争议[J].协和医学杂志, 2019, 10:211-215. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xhyx201903006 |