[1]
|
Petrossians P, Tichomirowa MA, Stevenaert A, et al. The liege acromegaly survey (las):A new software tool for the study of acromegaly[J]. Ann Endocrinol (Paris),2012,73:190-201. doi: 10.1016/j.ando.2012.05.001 |
[2]
|
Jenkins D, O'Brien I, Johnson A, et al. The birmingham pituitary database:Auditing the outcome of the treatment of acromegaly[J]. Clin Endocrinol (Oxf),1995,43:517-522. doi: 10.1111/j.1365-2265.1995.tb02913.x |
[3]
|
Drange MR, Fram NR, Herman-Bonert V, et al. Pituitary tumor registry:A novel clinical resource[J]. J Clin Endocrinol Metab,2000,85:168-174. |
[4]
|
Katznelson L, Kleinberg D, Vance ML, et al. Hypogon-adism in patients with acromegaly:Data from the multi-centre acromegaly registry pilot study[J]. Clin Endocrinol (Oxf),2001,54:183-188. doi: 10.1046/j.1365-2265.2001.01214.x |
[5]
|
Ferrante E, Ferraroni M, Castrignano T, et al. Non-functioning pituitary adenoma database:A useful resource to improve the clinical management of pituitary tumors[J]. Eur J Endocrinol,2006,155:823-829. doi: 10.1530/eje.1.02298 |
[6]
|
Webb SM, Santos A, Valassi E. The value of a european registry for pituitary adenomas:The example of cushing's syndrome registry[J]. Ann Endocrinol (Paris),2012,73:83-89. doi: 10.1016/j.ando.2012.03.035 |
[7]
|
Valassi E, Feelders R, Maiter D, et al. Worse health-related quality of life at long-term follow-up in patients with cushing's disease than patients with cortisol producing adenoma. Data from the ercusyn[J]. Clin Endocrinol (Oxf),2018,88:787-798. doi: 10.1111/cen.13600 |
[8]
|
Petrossians P, Daly AF, Natchev E, et al. Acromegaly at diagnosis in 3173 patients from the liege acromegaly survey (las) database[J]. Endocr Relat Cancer,2017,24:505-518. doi: 10.1530/ERC-17-0253 |
[9]
|
Vandeva S, Andreeva M, Orbetsova M, et al. Acromegaly in bulgaria-epidemiological characteristics derived from the national acromegaly database[J]. Endocrinolgia,2010,15:142-150. |
[10]
|
Vandeva S, Elenkova A, Natchev E, et al. Treatment outcome results from the bulgarian acromegaly database:Adjuvant dopamine agonist therapy is efficient in less than one fifth of non-irradiated patients[J]. Exp Clin Endocrinol Diabetes,2015,123:66-71. doi: 10.1055/s-0034-1389987 |
[11]
|
Feng M, Hua TR, Wang YF, et al. Demographic characterization of patients enrolled in the china pituitary disease register network[J]. Chin Med J (Engl),2018,131:2871-2873. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zhcmj201823017 |
[12]
|
华天瑞, 王任直, 李军莲, 等. 垂体疾病单中心数据库建设及应用[J]. 中国微侵袭神经外科杂志,2018,23:254-257. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgwqxsjwkzz201806004 |
[13]
|
冯铭, 刘小海, 包新杰, 等. 垂体acth腺瘤切除术后早期内分泌未缓解的病例分析[J]. 中国微侵袭神经外科杂志,2017,22:197-200. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgwqxsjwkzz201705004 |
[14]
|
Feng M, Liu Z, Liu X, et al. Diagnosis and outcomes of 341 patients with cushing's disease following transsphenoid surgery:A single-center experience[J]. World Neurosurg,2018,109:e75-e80. doi: 10.1016/j.wneu.2017.09.105 |
[15]
|
冯铭, 杨程显, 刘小海, 等. 岩下窦静脉取血判断库欣病肿瘤侧别及影响因素分析[J]. 中华神经外科杂志,2016,32:776-780. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zhsjwkzz98201608004 |
[16]
|
Liu Y, Liu X, Hong X, et al. Prediction of recurrence after transsphenoidal surgery for cushing's disease:The use of machine learning algorithms[J]. Neuroendocrinology,2019,108:201-210. https://pubmed.ncbi.nlm.nih.gov/30630181/ |
[17]
|
Fan Y, Li Y, Li Y, et al. Development and assessment of machine learning algorithms for predicting remission after transsphenoidal surgery among patients with acromegaly[J]. Endocrine, 2020,67:412-422. doi: 10.1007/s12020-019-02121-6 |
[18]
|
Wei R, Jiang C, Gao J, et al. Deep-learning approach to automatic identification of facial anomalies in endocrine disorders[J]. Neuroendocrinology, 2020,110:328-337. doi: 10.1159/000502211 |
[19]
|
Fan Y, Jiang S, Hua M, et al. Machine learning-based radiomics predicts radiotherapeutic response in patients with acromegaly[J]. Front Endocrinol (Lausanne),2019,10:588. doi: 10.3389/fendo.2019.00588 |
[20]
|
Fan Y, Liu Z, Hou B, et al. Development and validation of an mri-based radiomic signature for the preoperative prediction of treatment response in patients with invasive functional pituitary adenoma[J]. Eur J Radiol,2019,121:108647. doi: 10.1016/j.ejrad.2019.108647 |