留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

急性呼吸窘迫综合征右心改变的认识进展

廉慧 丁欣 王小亭

廉慧, 丁欣, 王小亭. 急性呼吸窘迫综合征右心改变的认识进展[J]. 协和医学杂志, 2020, 11(5): 522-527. doi: 10.3969/j.issn.1674-9081.2020.05.005
引用本文: 廉慧, 丁欣, 王小亭. 急性呼吸窘迫综合征右心改变的认识进展[J]. 协和医学杂志, 2020, 11(5): 522-527. doi: 10.3969/j.issn.1674-9081.2020.05.005
Hui LIAN, Xin DING, Xiao-ting WANG. Progress in the Understanding of Right Heart Changes in Acute Respiratory Distress Syndrome[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(5): 522-527. doi: 10.3969/j.issn.1674-9081.2020.05.005
Citation: Hui LIAN, Xin DING, Xiao-ting WANG. Progress in the Understanding of Right Heart Changes in Acute Respiratory Distress Syndrome[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(5): 522-527. doi: 10.3969/j.issn.1674-9081.2020.05.005

急性呼吸窘迫综合征右心改变的认识进展

doi: 10.3969/j.issn.1674-9081.2020.05.005
详细信息
    通讯作者:

    王小亭  电话:010-69152300, E-mail: icuting@163.com

  • 中图分类号: R563.8; R541.5

Progress in the Understanding of Right Heart Changes in Acute Respiratory Distress Syndrome

More Information
    Corresponding author: WANG Xiao-ting  Tel: 86-10-69152300, E-mail: icuting@163.com
  • 摘要: 尽管治疗方案经历了长足的发展,急性呼吸窘迫综合征(acute respiratory distress syndrome, ARDS)的病死率仍居高不下。随着研究的深入,学者们逐渐发现ARDS患者不仅出现肺损伤,也会出现循环损伤,导致右心功能不全及急性肺源性心脏病。短暂的低氧血症并非ARDS患者预后的独立危险因素,而循环损伤可直接影响其预后。因此,ARDS治疗的核心逐渐从肺保护转向于右心保护。本文对ARDS右心改变的特点及右心保护的策略进行梳理和总结,同时针对循环保护的环节,提出“抢先保护”的理念,为ARDS的治疗提供新的思路。
    利益冲突:无
  • [1] Yilmaz M, Iscimen R, Keegan MT, et al. Six-month survival of patients with acute lung injury: prospective cohort study[J]. Crit Care Med, 2007, 35:2303-2307. doi:  10.1097/01.CCM.0000284505.96481.24
    [2] Kirby RR, Downs JB, Civetta JM, et al. High level positive end expiratory pressure (PEEP) in acute respiratory insufficiency[J]. Chest, 1975, 67:156-163. doi:  10.1378/chest.67.2.156
    [3] Esteban A, Anzueto A, Frutos F, et al. Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study[J]. JAMA, 2002, 287:345-355. doi:  10.1001/jama.287.3.345
    [4] Brower RG, Matthay MA, Morris A, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome[J]. N Engl J Med, 2000, 342:1301-1308. doi:  10.1056/NEJM200005043421801
    [5] Panwar R, Hardie M, Bellomo R, et al. Conservative versus Liberal Oxygenation Targets for Mechanically Ventilated Patients. A Pilot Multicenter Randomized Controlled Trial[J]. Am J Respir Crit Care Med, 2016, 193:43-51. doi:  10.1164/rccm.201505-1019OC
    [6] Repessé X, Charron C, Vieillard-Baron A. Acute respiratory distress syndrome: the heart side of the moon[J]. Curr Opin Crit Care, 2016, 22:38-44. doi:  10.1097/MCC.0000000000000267
    [7] Vieillard-Baron A, Schmitt JM, Augarde R, et al. Acute cor pulmonale in acute respiratory distress syndrome submitted to protective ventilation: incidence, clinical implications, and prognosis[J]. Crit Care Med, 2001, 29:1551-1555. doi:  10.1097/00003246-200108000-00009
    [8] Zapol WM, Snider MT, Hill JD, et al. Extracorporeal membrane oxygenation in severe acute respiratory failure. A randomized prospective study[J]. JAMA, 1979, 242:2193-2196. doi:  10.1001/jama.1979.03300200023016
    [9] Jardin F, Gueret P, Dubourg O, et al. Two-dimensional echocardiographic evaluation of right ventricular size and contractility in acute respiratory failure[J]. Crit Care Med, 1985, 13:952-956. doi:  10.1097/00003246-198511000-00035
    [10] Jardin F, Dubourg O, Bourdarias JP. Echocardiographic pattern of acute cor pulmonale[J]. Chest, 1997, 111:209-217. doi:  10.1378/chest.111.1.209
    [11] Vieillard-Baron A, Prin S, Chergui K, et al. Echo-Doppler demonstration of acute cor pulmonale at the bedside in the medical intensive care unit[J]. Am J Respir Crit Care Med, 2002, 166:1310-1319. doi:  10.1164/rccm.200202-146CC
    [12] Mekontso Dessap A, Boissier F, Charron C, et al. Acute cor pulmonale during protective ventilation for acute respiratory distress syndrome: prevalence, predictors, and clinical impact[J]. Intensive Care Med, 2016, 42:862-870. doi:  10.1007/s00134-015-4141-2
    [13] Vieillard-Baron A, Matthay M, Teboul JL, et al. Experts' opinion on management of hemodynamics in ARDS patients: focus on the effects of mechanical ventilation[J]. Intensive Care Med, 2016, 42:739-749. doi:  10.1007/s00134-016-4326-3
    [14] Bull TM, Clark B, McFann K, et al. Pulmonary vascular dysfunction is associated with poor outcomes in patients with acute lung injury[J]. Am J Respir Crit Care Med, 2010, 182:1123-1128. doi:  10.1164/rccm.201002-0250OC
    [15] Cepkova M, Kapur V, Ren XS, et al. Pulmonary dead space fraction and pulmonary artery systolic pressure as early predictors of clinical outcome in acute lung injury[J]. Chest, 2007, 132:836-842. doi:  10.1378/chest.07-0409
    [16] Vieillard-Baron A, Loubieres Y, Schmitt JM, et al. Cyclic changes in right ventricular output impedance during mechanical ventilation[J]. J Appl Physiol(1985), 1999, 87:1644-1650. doi:  10.1152/jappl.1999.87.5.1644
    [17] Bellani G, Laffey JG, Pham T, et al. Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries[J]. JAMA, 2016, 315:788-800. doi:  10.1001/jama.2016.0291
    [18] Boissier F, Katsahian S, Razazi K, et al. Prevalence and prognosis of cor pulmonale during protective ventilation for acute respiratory distress syndrome[J]. Intensive Care Med, 2013, 39:1725-1733. doi:  10.1007/s00134-013-2941-9
    [19] Schmitt JM, Vieillard-Baron A, Augarde R, et al. Positive end-expiratory pressure titration in acute respiratory distress syndrome patients: impact on right ventricular outflow impedance evaluated by pulmonary artery Doppler flow velocity measurements[J]. Crit Care Med, 2001, 29:1154-1158. doi:  10.1097/00003246-200106000-00012
    [20] Stengl M, Ledvinova L, Chvojka J, et al. Effects of clinically relevant acute hypercapnic and metabolic acidosis on the cardiovascular system: an experimental porcine study[J]. Crit Care, 2013, 17:R303. doi:  10.1186/cc13173
    [21] Philippe M, Bernard L, Thomas D, et al. Right ventriculoarterial coupling in acute respiratory distress syndrome (ARDS) and expected benefits of CO2 removal therapy[J]. J Criti Care, 2013, 28:e30. doi:  10.1016/j.jcrc.2013.07.010
    [22] Phua J, Badia JR, Adhikari NK, et al. Has mortality from acute respiratory distress syndrome decreased over time?: A systematic review[J]. Am J Respir Crit Care Med, 2009, 179:220-227. doi:  10.1164/rccm.200805-722OC
    [23] Biswas A. Right heart failure in acute respiratory distress syndrome: An unappreciated albeit a potential target for intervention in the management of the disease[J]. Indian J Crit Care Med, 2015, 19:606-609. doi:  10.4103/0972-5229.167039
    [24] Chiumello D, Carlesso E, Cadringher P, et al. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome[J]. Am J Respir Crit Care Med, 2008, 178:346-355. doi:  10.1164/rccm.200710-1589OC
    [25] Petrucci N, Iacovelli W. The Acute Respiratory Distress Syndrome Network, Ventilation with Lower Tidal Volumes as Compared with Traditional Tidal Volumes for Acute Lung Injury and the Acute Respiratory Distress Syndrome[J]. N Engl J Med, 2004, 342:1301-1308.
    [26] Ranieri VM, Suter PM, Tortorella C, et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial[J]. JAMA, 1999, 282:54-61. doi:  10.1001/jama.282.1.54
    [27] Putensen C, Theuerkauf N, Zinserling J, et al. Meta-analysis: ventilation strategies and outcomes of the acute respira-tory distress syndrome and acute lung injury[J]. Ann Intern Med, 2009, 151:566-576. doi:  10.7326/0003-4819-151-8-200910200-00011
    [28] Vieillard-Baron A, Prin S, Augarde R, et al. Increasing respiratory rate to improve CO2 clearance during mechanical ventilation is not a panacea in acute respiratory failure[J]. Crit Care Med, 2002, 30:1407-1412. doi:  10.1097/00003246-200207000-00001
    [29] Guérin C, Reignier J, Richard JC, et al. Prone positioning in severe acute respiratory distress syndrome[J]. N Engl J Med, 2013, 368:2159-2168. doi:  10.1056/NEJMoa1214103
    [30] Bianchi AMA, Reboredo MM, Lucinda LM, et al. The Effects of Prone Position Ventilation on Experimental Mild Acute Lung Injury Induced by Intraperitoneal Lipopolysaccharide Injection in Rats[J]. Lung, 2016, 194:193-199. doi:  10.1007/s00408-016-9853-8
    [31] Jozwiak M, Teboul JL, Anguel N, et al. Beneficial hemodynamic effects of prone positioning in patients with acute respiratory distress syndrome[J]. Am J Respir Crit Care Med, 2013, 188:1428-1433. doi:  10.1164/rccm.201303-0593OC
    [32] Yoshida T, Uchiyama A, Matsuura N, et al. The comparison of spontaneous breathing and muscle paralysis in two different severities of experimental lung injury[J]. Crit Care Med, 2013, 41:536-545. doi:  10.1097/CCM.0b013e3182711972
    [33] Goligher EC, Fan E, Herridge MS, et al. Evolution of Diaphragm Thickness during Mechanical Ventilation. Impact of Inspiratory Effort[J]. Am J Respir Crit Care Med, 2015, 192:1080-1088. doi:  10.1164/rccm.201503-0620OC
    [34] Papazian L, Forel JM, Gacouin A, et al. Neuromuscular blockers in early acute respiratory distress syndrome[J]. N Engl J Med, 2010, 363:1107-1116. doi:  10.1056/NEJMoa1005372
    [35] Sasidhar M, Chatburn RL. Tidal volume variability during airway pressure release ventilation: case summary and theoretical analysis[J]. Respir Care, 2012, 57:1325-1333. doi:  10.4187/respcare.01394
    [36] Broccard AF, Hotchkiss JR, Kuwayama N, et al. Consequences of vascular flow on lung injury induced by mechanical ventilation[J]. Am J Respir Crit Care Med, 1998, 157:1935-1942. doi:  10.1164/ajrccm.157.6.9612006
    [37] Jozwiak M, Teboul JL, Monnet X. Extravascular lung water in critical care: recent advances and clinical applications[J]. Ann Intensive Care, 2015, 5:38. doi:  10.1186/s13613-015-0081-9
    [38] Pan P, Su LX, Zhou X, et al. Critical hemodynamic therapy oriented resuscitation helping reduce lung water production and improve survival[J]. Chin Med J (Engl), 2019, 132:1139-1146. doi:  10.1097/CM9.0000000000000205
    [39] National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, Wiedemann HP, Wheeler AP, et al. Comparison of two fluid-management strategies in acute lung injury[J]. N Engl J Med, 2006, 354:2564-2575. doi:  10.1056/NEJMoa062200
    [40] Paternot A, Repessé X, Vieillard-Baron A. Rationale and Description of Right Ventricle-Protective Ventilation in ARDS[J]. Respir Care, 2016, 61:1391-1396. doi:  10.4187/respcare.04943
    [41] 毛佳玉, 王小亭, 刘大为.重症超声赋予重症无处不在的病因管理[J].协和医学杂志, 2018, 9:404-406. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xhyx201805005
    [42] 邢志群, 王小亭, 刘大为.重症超声:血流动力学的推手[J].协和医学杂志, 2019, 10:461-464. http://oldmed.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_xhyx201905008
  • 加载中
计量
  • 文章访问数:  174
  • HTML全文浏览量:  46
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-28
  • 刊出日期:  2020-09-30

目录

    /

    返回文章
    返回