-
摘要: 光声成像作为一种新兴的生物医学成像技术, 以光声效应为成像基础, 兼备光学高对比度、超声高穿透度的优点,同时具有光谱信息获取能力,可进行功能成像,具有良好的临床应用前景。乳腺肿瘤是目前光声成像技术临床应用最广泛的领域,本文综述光声成像技术特点及其在乳腺肿瘤的临床应用现状,并对未来应用前景进行展望。Abstract: Photoacoustic imaging(PAI) based on the photoacoustic effect is a new and promising biomedical imaging technology. It has the advantages of high optical contrast and deep ultrasonic penetration. Furthermore, it has the ability to acquire functional information based on optical imaging with multi-wavelength. The application of PAI in breast tumors has been widely explored. In this article, we reviewed the PAI systems and their clinical application to breast tumors over the past few years and looked into the prospect of the application of PAI in the future.
-
Key words:
- photoacoustic imaging /
- breast tumor /
- diagnosis /
- biomedical application
利益冲突 无 -
表 1 乳腺肿瘤光声成像设备及其参数简介
研发机构/团队 设备名称 分辨率 最大成像深度 扫描时间 参考文献 荷兰特温特大学 TPAM 3.0 mm 60 mm 10 min [35] Seno Medical Imagio 0.5 mm 30 mm - [42] Kruger团队 PAM 0.42 mm 40 mm 12 s~3.2 min [49] 京都大学/佳能联合研究中心 PAM-03 0.57 mm 30 mm 2~4 min [50] iThera Medical MSOT 250 μm 30 mm - [58] 佛罗里达大学 FPAT 0.5 mm 56 mm - [62] 汪立宏团队 SBH-PACT 255 μm 40 mm 15 s [63] 北京协和医院超声医学科/迈瑞团队 手持式光声/超声设备 0.1~1 mm 30 mm 5~10 min 待发表 TPAM:Twente光声乳腺镜; Imagio:手持式光声/超声多模态成像系统; PAM:光声乳腺成像系统; PAM-03:第三代光声乳腺成像系统; MSOT:多光谱光声层析成像系统; FPAT:功能性光声层析成像系统; SBH-PACT:单次屏气光声计算层析成像系统; -:未报道 -
[1] Fan L, Strasser-Weippl K, Li JJ, et al. Breast cancer in China[J]. Lancet Oncol, 2014, 15: e279-e289. doi: 10.1016/S1470-2045(13)70567-9 [2] Onega T, Beaber EF, Sprague BL, et al. Breast cancer screening in an era of personalized regimens: A conceptual model and National Cancer Institute initiative for risk-based and preference-based approaches at a population level[J]. Cancer, 2014, 120: 2955-2964. doi: 10.1002/cncr.28771 [3] Pinsky RW, Helvie MA. Mammographic breast density: effect on imaging and breast cancer risk[J]. J Natl Compr Cancer Network, 2010, 8: 1157-1165. doi: 10.6004/jnccn.2010.0085 [4] Freer PE. Mammographic breast density: impact on breast cancer risk and implications for screening[J]. Radiographics, 2015, 35: 302-315. doi: 10.1148/rg.352140106 [5] Devolli-Disha E, Manxhuka-Kërliu S, Ymeri H, et al. Comparative accuracy of mammography and ultrasound in women with breast symptoms according to age and breast density[J]. Bosnian J Basic Med Sci, 2009, 9: 131. doi: 10.17305/bjbms.2009.2832 [6] Hooley RJ, Scoutt LM, Philpotts LE. Breast ultrasonography: state of the art[J]. Radiology, 2013, 268: 642-659. doi: 10.1148/radiol.13121606 [7] Abeyakoon O, Morscher S, Dalhaus N, et al. Optoacoustic Imaging Detects Hormone-Related Physiological Changes of Breast Parenchyma[J]. Ultraschall Med, 2019, 40: 757-763 doi: 10.1055/a-0628-6248 [8] Bell AG. The production of sound by radiant energy[J]. Science, 1881, 2: 242-253. [9] Wang LV, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs[J]. Science, 2012, 335: 1458-1462. doi: 10.1126/science.1216210 [10] Xu MH, Wang LV. Photoacoustic imaging in biomedicine[J]. Rev Sci Instrum, 2006, 77: 41101. doi: 10.1063/1.2195024 [11] Zackrisson S, Van De Ven S, Gambhir SS. Light in and sound out: emerging translational strategies for photoacoustic imaging[J]. Cancer Res, 2014, 74: 979-1004. doi: 10.1158/0008-5472.CAN-13-2387 [12] Valluru KS, Wilson KE, Willmann JURK. Photoacoustic imaging in oncology: translational preclinical and early clinical experience[J]. Radiology, 2016, 280: 332-349. doi: 10.1148/radiol.16151414 [13] Beard P. Biomedical photoacoustic imaging[J]. Interface Focus, 2011, 1: 602-631. doi: 10.1098/rsfs.2011.0028 [14] Manohar S, Razansky D. Photoacoustics: a historical review[J]. Adv Opt Photonics, 2016, 8: 586-617. doi: 10.1364/AOP.8.000586 [15] Lutzweiler C, Razansky D. Optoacoustic imaging and tomography: reconstruction approaches and outstanding challenges in image performance and quantification[J]. Sensors, 2013, 13: 7345-7384. doi: 10.3390/s130607345 [16] Mallidi S, Luke GP, Emelianov S. Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance[J]. Trends Biotechnol, 2011, 29: 213-221. doi: 10.1016/j.tibtech.2011.01.006 [17] Schellenberg MW, Hunt HK. Hand-held optoacoustic imaging: A review[J]. Photoacoustics, 2018, 11: 14-27. doi: 10.1016/j.pacs.2018.07.001 [18] Upputuri PK, Sivasubramanian K, Mark CSK, et al. Recent developments in vascular imaging techniques in tissue engineering and regenerative medicine[J]. Biomed Res Int, 2015, 2015: 783983. doi: 10.1155/2015/783983 [19] Raghunathan R, Singh M, Dickinson ME, et al. Optical coherence tomography for embryonic imaging: a review[J]. J Biomed Opt, 2016, 21: 50902. [20] Mondal PP, Dilipkumar S, Kavya M, et al. Developments in single and multi-photon fluorescence microscopy for high resolution imaging[J]. J Indian Inst Sci, 2013, 93: 15-34. http://www.ams.org/mathscinet-getitem?mr=3088553 [21] 陶超, 殷杰, 刘晓峻.生物组织光声成像技术综述[J].数据采集与处理, 2015, 30: 289-298. https://www.cnki.com.cn/Article/CJFDTOTAL-SJCJ201502006.htm [22] Zhou Y, Wang DP, Zhang YM, et al. A phosphorus phthalocyanine formulation with intense absorbance at 1000 nm for deep optical imaging[J]. Theranostics, 2016, 6: 688. doi: 10.7150/thno.14555 [23] Upputuri PK, Pramanik M. Recent advances toward preclinical and clinical translation of photoacoustic tomography: a review[J]. J Biomed Opt, 2016, 22: 41006. doi: 10.1117/1.JBO.22.4.041006 [24] Schwarz M, Buehler A, Aguirre J, et al. Three-dimensional multispectral optoacoustic mesoscopy reveals melanin and blood oxygenation in human skin in vivo[J]. J Biophotonics, 2016, 9: 55-60. doi: 10.1002/jbio.201500247 [25] Manohar S, Kharine A, Van Hespen JCG, et al. Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms[J]. J Biomed Opt, 2004, 9: 1172-1181. doi: 10.1117/1.1803548 [26] Manohar S, Kharine A, van Hespen JCG, et al. The Twente Photoacoustic Mammoscope: system overview and perfor-mance[J]. Phys Med Biol, 2005, 50: 2543. doi: 10.1088/0031-9155/50/11/007 [27] Manohar S, Vaartjes SE, van Hespen JC, et al. Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics[J]. Opt Express, 2007, 15: 12277-12285. doi: 10.1364/OE.15.012277 [28] Piras D, Xia WF, Steenbergen W, et al. Photoacoustic imaging of the breast using the twente photoacoustic mammoscope: present status and future perspectives[J]. IEEE J Sel Top Quantum Electron, 2009, 16: 730-739. [29] Hilgerink MP, Hummel MJ, Manohar S, et al. Assessment of the added value of the Twente Photoacoustic Mammoscope in breast cancer diagnosis[J]. Med Devices (Auckl), 2011, 4: 107. [30] Heijblom M, Piras D, Xia W, et al. Visualizing breast cancer using the Twente photoacoustic mammoscope: what do we learn from twelve new patient measurements?[J]. Opt Express, 2012, 20: 11582-11597. doi: 10.1364/OE.20.011582 [31] Heijblom M, Piras D, Xia W, et al. Imaging breast lesions using the Twente Photoacoustic Mammoscope: Ongoing clinical experience[C]//Photons Plus Ultrasound: Imaging and Sensing 2012. International Society for Optics and Photonics, 2012, 8223: 82230C. [32] Heijblom M, Piras D, Maartens E, et al. Appearance of breast cysts in planar geometry photoacoustic mammography using 1064-nm excitation[J]. J Biomed Opt, 2013, 18: 126009. doi: 10.1117/1.JBO.18.12.126009 [33] Heijblom M, Steenbergen W, Manohar S. Clinical photoacoustic breast imaging: the twente experience[J]. IEEE Pulse, 2015, 6: 42-46. [34] Heijblom M, Piras D, Brinkhuis M, et al. Photoacoustic image patterns of breast carcinoma and comparisons with Magnetic Resonance Imaging and vascular stained histopathology[J]. Sci Rep, 2015, 5: 11778. doi: 10.1038/srep11778 [35] Heijblom M, Piras D, van den Engh FM, et al. The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies[J]. Eur Radiol, 2016, 26: 3874-3887. doi: 10.1007/s00330-016-4240-7 [36] Oraevsky AA, Jacques SL, Esenaliev RO, et al. Laser-based optoacoustic imaging in biological tissues[C]//Laser-Tissue Interaction V, Ultraviolet Radiation Hazards. International Society for Optics and Photonics, 1994, 2134: 122-128. [37] Kruger RA, Liu P. Photoacoustic ultrasound: Pulse production and detection in 0.5% Liposyn[J]. Med Phys, 1994, 21: 1179-1184. doi: 10.1118/1.597399 [38] Oraevsky AA, Karabutov AA, Solomatin SV, et al. Laser optoacoustic imaging of breast cancer in vivo[C]//Biomedical Optoacoustics Ⅱ. International Society for Optics and Photonics, 2001, 4256: 6-15. [39] Ermilov SA, Khamapirad T, Conjusteau A, et al. Laser optoacoustic imaging system for detection of breast cancer[J]. J Biomed Opt, 2009, 14: 24007. doi: 10.1117/1.3086616 [40] Ermilov SA, Fronheiser MP, Brecht HP, et al. Development of laser optoacoustic and ultrasonic imaging system for breast cancer utilizing handheld array probes[C]//Photons Plus Ultrasound: Imaging and Sensing 2009. International Society for Optics and Photonics, 2009, 7177: 717703. [41] Neuschler EI, Butler R, Young CA, et al. A pivotal study of optoacoustic imaging to diagnose benign and malignant breast masses: a new evaluation tool for radiologists[J]. Radiology, 2017, 287: 398-412. http://europepmc.org/abstract/MED/29178816 [42] Menezes GLG, Pijnappel RM, Meeuwis C, et al. Downgrading of breast masses suspicious for cancer by using optoacoustic breast imaging[J]. Radiology, 2018, 288: 355-365. doi: 10.1148/radiol.2018170500 [43] Menezes GLG, Mann RM, Meeuwis C, et al. Optoacoustic imaging of the breast: correlation with histopathology and histopathologic biomarkers[J]. Eur Radiol, 2019, 29: 6728-6740. doi: 10.1007/s00330-019-06262-0 [44] Dogan BE, Menezes GLG, Butler RS, et al. Optoacoustic imaging and gray-scale US features of breast cancers: correlation with molecular subtypes[J]. Radiology, 2019, 292: 564-572. doi: 10.1148/radiol.2019182071 [45] Kruger RA, Liu PY, Fang YR, et al. Photoacoustic ultrasound (PAUS)-reconstruction tomography[J]. Med Phys, 1995, 22: 1605-1609. doi: 10.1118/1.597429 [46] Kruger RA, Miller KD, Reynolds HE, et al. Breast Cancer in Vivo: Contrast Enhancement with Thermoacoustic CT at 434 MHz-Feasibility Study[J]. Radiology, 2000, 216: 279-283. doi: 10.1148/radiology.216.1.r00jl30279 [47] Kruger RA, Kiser WL, Reinecke DR, et al. Thermoacoustic Molecular Imaging of Small Animals[J]. Mol Imaging, 2003, 2: 113-123. doi: 10.1162/153535003322331993 [48] Kruger RA, Lam RB, Reinecke DR, et al. Photoacoustic angiography of the breast[J]. Med Phys, 2010, 37: 6096-6100. doi: 10.1118/1.3497677 [49] Kruger RA, Kuzmiak CM, Lam RB, et al. Dedicated 3D photoacoustic breast imaging[J]. Med Phys, 2013, 40: 113301. doi: 10.1118/1.4824317 [50] Shiina T, Toi M, Yagi T. Development and clinical transla-tion of photoacoustic mammography[J]. Biomed Eng Lett, 2018, 8: 157-165. doi: 10.1007/s13534-018-0070-7 [51] Fakhrejahani E, Torii M, Kitai T, et al. Clinical Report on the First Prototype of a Photoacoustic Tomography System with Dual Illumination for Breast Cancer Imaging[J]. PLoS One, 2015, 10: e0139113. doi: 10.1371/journal.pone.0139113 [52] Asao Y, Hashizume Y, Suita T, et al. Photoacoustic mammography capable of simultaneously acquiring photoacoustic and ultrasound images[J]. J Biomed Opt, 2016, 21: 116009. doi: 10.1117/1.JBO.21.11.116009 [53] Toi M, Asao Y, Matsumoto Y, et al. Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array[J]. Sci Rep, 2017, 7: 41970. doi: 10.1038/srep41970 [54] Yamaga I, Kawaguchi-Sakita N, Asao Y, et al. Vascular branching point counts using photoacoustic imaging in the superficial layer of the breast: a potential biomarker for breast cancer[J]. Photoacoustics, 2018, 11: 6-13. doi: 10.1016/j.pacs.2018.06.002 [55] Taruttis A, Ntziachristos V. Advances in real-time multispectral optoacoustic imaging and its applications[J]. Nat Photonics, 2015, 9: 219. doi: 10.1038/nphoton.2015.29 [56] Buehler A, Kacprowicz M, Taruttis A, et al. Real-time handheld multispectral optoacoustic imaging[J]. Opt Lett, 2013, 38: 1404-1406. doi: 10.1364/OL.38.001404 [57] Diot G, Metz S, Noske A, et al. Multispectral optoacoustic tomography (MSOT) of human breast cancer[J]. Clin Cancer Res, 2017, 23: 6912-6922. doi: 10.1158/1078-0432.CCR-16-3200 [58] Becker A, Masthoff M, Claussen J, et al. Multispectral optoacoustic tomography of the human breast: characterisation of healthy tissue and malignant lesions using a hybrid ultrasound-optoacoustic approach[J]. Eur Radiol, 2018, 28: 602-609. doi: 10.1007/s00330-017-5002-x [59] Goh Y, Balasundaram G, Moothanchery M, et al. Multispectral optoacoustic tomography in assessment of breast tumor margins during breast-conserving surgery: a first-in-human case study[J]. Clin Breast Cancer, 2018, 18: e1247-e1250. doi: 10.1016/j.clbc.2018.07.026 [60] Li XQ, Xi L, Jiang RX, et al. Integrated diffuse optical tomography and photoacoustic tomography: phantom validations[J]. Biomed Opt Express, 2011, 2: 2348-2353. doi: 10.1364/BOE.2.002348 [61] Xi L, Li XQ, Yao L, et al. Design and evaluation of a hybrid photoacoustic tomography and diffuse optical tomography system for breast cancer detection[J]. Med Phys, 2012, 39: 2584-2594. doi: 10.1118/1.3703598 [62] Li XQ, Heldermon CD, Yao L, et al. High resolution functional photoacoustic tomography of breast cancer[J]. Med Phys, 2015, 42: 5321-5328. doi: 10.1118/1.4928598 [63] Lin L, Hu P, Shi JH, et al. Single-breath-hold photoa-coustic computed tomography of the breast[J]. Nat Commun, 2018, 9: 2352. doi: 10.1038/s41467-018-04576-z [64] 张睿, 杨萌, 姜玉新.光声成像技术及其临床应用[J].协和医学杂志, 2019, 10: 381-386. doi: 10.3969/j.issn.1674-9081.2019.04.014 -