-
摘要: 休克是临床常见的重症状态, 可迅速进展为多器官功能衰竭, 病死率高。应用缩血管药物是休克治疗中维持灌注压的重要措施, 儿茶酚胺类药物是目前最常用的选择, 去甲肾上腺素是多数休克状态下的首要选择, 血管加压素及其类似物、血管紧张素Ⅱ均能有效维持灌注压、减少去甲肾上腺素用量, 也是临床上维持灌注压可选择的药物。根据不同休克类型、病因及不同药物作用机制选择缩血管药物, 对优化血流动力学治疗及减少不良反应尤为重要。Abstract: Shock is a common critical condition of numerous diseases, resulting in multi-organ dysfunction and death. Vasopressors are the essential part of shock management. Catecholamines are the most commonly used vasopressors in the intensive care unit, among which norepinephrine is the first-line therapy in most clinical conditions. Vasopressin and angiotensin Ⅱ may be useful owing to their norepinephrine-sparing effects. Careful selection of vasoconstriction drugs based on desired pharmacologic effects that are matched to the patient's underlying pathophysiology of shock may optimize hemodynamics while reducing the potential for adverse effects.
-
Key words:
- shock /
- vasoconstriction drugs /
- norepinephrine /
- vasopressin /
- angiotensin
利益冲突 无 -
表 1 拟交感神经药物的受体药理特性
药物 心脏β1 血管 α1 β2 去甲肾上腺素 ++ ++++ + 肾上腺素 ++++ ++++ +++ 多巴胺 ++++ +++ + 多巴酚丁胺 ++++ + ++ 异丙肾上腺素 ++++ / ++ 表 2 拟交感神经药物的血流动力学作用
药物 CO SVR PAWP MAP HR 去甲肾上腺素 ↑↓ ↑↑ ↑ ↑↑ ↑ 肾上腺素 ↑↑ ↑ ↑ ↑↑ ↑↑ 多巴胺 ↑ ↑ ↑ ↑ ↑↑ 多巴酚丁胺 ↑↑ ↓↔ ↓↔ ↑↓↔ ↑ 异丙肾上腺素 ↑↑ ↔ ↔ ↔ ↑↑ ↑代表增加;↓代表下降;↔代表不变;CO:心输出量; SVR:体循环阻力; PAWP:肺动脉楔压; MAP:平均动脉压; HR:心率 表 3 血管加压素各受体亚型的分布及功能
分类 分布范围 主要功能 V1受体 肝脏、血管平滑肌、血小板、外周组织、中枢神经系统 血管收缩 V2受体 肾脏集合小管细胞 水的重吸收 V3受体 中枢神经系统,特别是垂体前叶 神经递质、促肾上腺皮质激素的释放 缩宫素受体 乳腺、子宫 平滑肌收缩、某些血管床舒张 purinergic受体 心脏内皮细胞 - -
[1] Mayr VD, Dunser MW, Greil V, et al. Causes of death and determinants of outcome in critically ill patients[J]. Crit Care, 2006, 10:R154. doi: 10.1186/cc5086 [2] De Backer D, Foulon P. Minimizing catecholamines and optimizing perfusion[J].Crit Care, 2019, 23:149. doi: 10.1186/s13054-019-2433-6 [3] Jentzer JC, Coons JC, Link CB, et al. Pharmacotherapy update on the use of vasopressors and inotropes in the intensive care unit[J]. J Cardiovasc Pharmacol Ther, 2015, 20:249-246. doi: 10.1177/1074248414559838 [4] Annane D, Ouanes-Besbes L, de Backer D, et al. A global perspective on vasoactive agents in shock[J]. Intensive Care Med, 2018, 44:833-846. doi: 10.1007/s00134-018-5242-5 [5] De Backer D, Biston P, Devriendt J, et al. Comparison of dopamine and norepinephrine in the treatment of shock[J]. N Engl J Med, 2010, 362:779-789. doi: 10.1056/NEJMoa0907118 [6] Hamzaoui O, Jozwiak M, Geffriaud T, et al. Norepinephrine exerts an inotropic effect at the early phase of human septic shock[J]. Br J Anaesth, 2018, 120:517-524. doi: 10.1016/j.bja.2017.11.065 [7] De Backer D, Pinsky M. Norepinephrine improves cardiac function during septic shock, but why?[J].Br J Anaesth, 2018, 120:421-424. doi: 10.1016/j.bja.2017.11.069 [8] Albanese J, Leone M, Garnier F, et al. Renal effects of norepinephrine in septic and nonseptic patients[J]. Chest, 2004, 126:534-539. doi: 10.1378/chest.126.2.534 [9] Boerma EC, Ince C. The role of vasoactive agents in the resuscitation of microvascular perfusion and tissue oxygenation in critically ill patients[J]. Intensive Care Med, 2010, 36:2004-2018. doi: 10.1007/s00134-010-1970-x [10] Hamzaoui O, Scheeren TWL, Teboul JL.Norepinephrine in septic shock:when and how much?[J].Curr Opin Crit Care, 2017, 23:342-347. doi: 10.1097/MCC.0000000000000418 [11] Martin C, Medam S, Antonini F, et al. Norepinephrine:not too much, too long[J]. Shock, 2015, 44:305-309. doi: 10.1097/SHK.0000000000000426 [12] Tanja A, Treschan MD, Peters MD. The Vasopressin System[J].Anesthesiology, 2006, 105:599-612 doi: 10.1097/00000542-200609000-00026 [13] Holmes CL, Landry DW, Granton JT. Science review:vasopressin and the cardiovascular system part 1-receptor physiology[J]. Crit Care, 2003, 7:427-434. doi: 10.1186/cc2337 [14] James A, Russell MD, Keith R, et al. Vasopressin versus Norepinephrine Infusion in Patients with Septic Shock[J].N Engl J Med, 2008, 358:877-887. doi: 10.1056/NEJMoa067373 [15] Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign:international guidelines for management of sepsis and septicshock:2016[J]. Intensive Care Med, 2017, 43:304-377. doi: 10.1007/s00134-017-4683-6 [16] Marks JA, Pascual JL. Selepressin in septic shock:Sharpening the VASST effects of vasopressin?[J].Crit Care Med, 2014, 42:1747-1748. doi: 10.1097/CCM.0000000000000420 [17] Liu ZM, Chen J, Kou QY, et al. Terlipressin versus norepinephrine as infusion in patients with septic shock:a multicentre, randomised, double-blinded trial[J].Intensive Care Med, 2018, 44:1816-1825. doi: 10.1007/s00134-018-5267-9 [18] Gordon AC, Mason AJ, Thirunavukkarasu N, et al. Effect of early vasopressin vs norepinephrine on kidney failure in patients with septic shock:the vanish randomized clinical trial[J]. JAMA, 2016, 316:509-518. doi: 10.1001/jama.2016.10485 [19] Scheeren TWL, Bakker J, De Backer D, et al. Current use of vasopressors in septic shock[J]. Ann Intensive Care, 2019, 9:20. doi: 10.1186/s13613-019-0498-7 [20] Dietrich A, Mathia S, Kaminski H, et al. Chronic activation of vasopressin V2 receptor signalling lowers renal medullary oxygen levels in rats[J]. Acta Physiol (Oxf), 2013, 207:721-731. doi: 10.1111/apha.12067 [21] Qiu X, Huang Y, Xu J, et al.Effects of terlipressin on microcirculation of small bowel mesentery in rats with endotoxic shock[J].J Surg Res, 2014, 188:503-509. http://www.ncbi.nlm.nih.gov/pubmed/24582066 [22] Hall A, Busse LW, Ostermann M. Angiotensin in Critical Care[J]. Crit Care, 2018, 22:69. http://www.researchgate.net/publication/324074837_Angiotensin_in_Critical_Care [23] Khanna A, English SW, Wang XS, et al. Angiotensin Ⅱ for the Treatment of Vasodilatory Shock[J]. N Engl J Med, 2017, 377:419-430. http://www.onacademic.com/detail/journal_1000040154977810_2eaf.html -

表(3)
计量
- 文章访问数: 210
- HTML全文浏览量: 44
- PDF下载量: 198
- 被引次数: 0