临床研究的数据管理与质量控制

Data Management and Quality Control for Clinical Research

  • 摘要: 高质量临床研究项目的高效开展离不开规范的数据管理与质量控制。临床研究的数据管理与质量控制应始于研究设计, 并贯穿研究的整个过程。数据管理的过程包括数据管理计划、临床病例报告表设计、数据字典与编码说明书、数据库的构建、数据收集与监查、数据录入、数据核查与清理、生成关键新变量、医学编码、去隐私化处理、数据审核与锁定等过程。通过严格的数据管理与质量控制,可提高临床研究数据的完整性和准确度,从而提高整体临床研究质量。

     

    Abstract: A clinical research project of high quality cannot be carried out without standard data management and quality control. Data management and quality control of clinical research should be started from the design of the study and performed throughout the whole process of study. The process of data management includes planning, the design of case reporting form, data dictionary and coding specification, construction of the database, data collection and monitoring, data input, data auditing and cleaning, generation of new key variables, medical coding, deidentification, data review and data lock. Strict data management and quality control can improve the integrity and accuracy of clinical research, and further improve the quality of the overall clinical research project.

     

/

返回文章
返回