留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二代测序技术在微生物和感染性疾病中的应用

黄晶晶 肖盟 徐英春

黄晶晶, 肖盟, 徐英春. 二代测序技术在微生物和感染性疾病中的应用[J]. 协和医学杂志, 2018, 9(5): 448-452. doi: 10.3969/j.issn.1674-9081.2018.05.014
引用本文: 黄晶晶, 肖盟, 徐英春. 二代测序技术在微生物和感染性疾病中的应用[J]. 协和医学杂志, 2018, 9(5): 448-452. doi: 10.3969/j.issn.1674-9081.2018.05.014
Jing-jing, HUANG, Meng XIAO, Ying-chun XU. Application of Next Generation Sequencing in Clinical Microbiology and Infectious Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(5): 448-452. doi: 10.3969/j.issn.1674-9081.2018.05.014
Citation: Jing-jing, HUANG, Meng XIAO, Ying-chun XU. Application of Next Generation Sequencing in Clinical Microbiology and Infectious Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(5): 448-452. doi: 10.3969/j.issn.1674-9081.2018.05.014

二代测序技术在微生物和感染性疾病中的应用

doi: 10.3969/j.issn.1674-9081.2018.05.014
基金项目: 

中国医学科学院医学与健康科技创新工程项目 2016-12M-1-014

详细信息
    通讯作者:

    徐英春  电话:010-69159766,E-mail:xycpumch@139.com

  • 中图分类号: R446.5

Application of Next Generation Sequencing in Clinical Microbiology and Infectious Diseases

More Information
    Corresponding author: XU Ying-chun    Tel:010-69159766, E-mail:xycpumch@139.com
  • 摘要: 随着感染性疾病防治在卫生保健方面的重要性日益凸显,感染性疾病引起的社会关注逐渐增多,新技术在人类预防和控制病原体传播方面发挥着巨大作用。微生物实验室作为病原体检测的一线科室,通过镜检、培养、鉴定、药敏等方法,在感染控制中发挥着重要作用。传统分子诊断和基因分型方法提供的信息有限,通常不能满足疫情暴发和传播调查需求。二代测序技术(next-generation sequencing,NGS)在单次序列测定中可确定菌株基因组完整的DNA序列,并从这些数据中得到抗菌药物耐药性、毒力及分型等可用于疫情调查的信息,进一步用于开展疫情特异性筛查。本文概述NGS技术及其在医院感染性疾病暴发调查、未知病原体鉴定、毒力分析、耐药基因组研究等临床微生物领域中的应用。
  • [1] Zhou K, Lokate M, Deurenberg RH, et al. Use of whole-genome sequencing to trace, control and characterize the regional expansion of extended-spectrum beta-lactamase producing ST15 Klebsiella pneumoniae[J]. Sci Rep, 2016, 6: 20840. doi:  10.1038/srep20840
    [2] Dark MJ. Whole-genome sequencing in bacteriology: state of the art[J]. Infect Drug Resist, 2013, 6: 115-123. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3797280/
    [3] Sboner A, Mu XJ, Greenbaum D, et al. The real cost of sequencing: higher than you think![J]. Genome Biol, 2011, 12: 125. doi:  10.1186/gb-2011-12-8-125
    [4] Steuernagel B, Taudien S, Gundlach H, et al. De novo 454 sequencing of barcoded BAC pools for comprehensive gene survey and genome analysis in the complex genome of barley[J]. BMC Genomics, 2009, 10: 547. doi:  10.1186/1471-2164-10-547
    [5] Junemann S, Sedlazeck FJ, Prior K, et al. Updating benchtop sequencing performance comparison[J]. Nat Biotechnol, 2013, 31: 294-296. doi:  10.1038/nbt.2522
    [6] Loman NJ, Misra RV, Dallman TJ, et al. Performance comparison of benchtop high-throughput sequencing platforms[J]. Nat Biotechnol, 2012, 30: 434-439. doi:  10.1038/nbt.2198
    [7] Head SR, Komori HK, LaMere SA, et al. Library construction for next-generation sequencing: overviews and challenges[J]. Biotechniques, 2014, 56: 61-64, 66, 68.
    [8] Parks DH, Imelfort M, Skennerton CT, et al. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes[J]. Genome Res, 2015, 25: 1043-1055. doi:  10.1101/gr.186072.114
    [9] Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments[J]. Genome Biol, 2014, 15: R46. doi:  10.1186/gb-2014-15-4-r64
    [10] Jolley KA, Maiden MC. BIGSdb: Scalable analysis of bacterial genome variation at the population level[J]. BMC Bioinformatics, 2010, 11: 595. doi:  10.1186/1471-2105-11-595
    [11] Aziz RK, Bartels D, Best AA, et al. The RAST Server: rapid annotations using subsystems technology[J]. BMC Genomics, 2008, 9: 75. doi:  10.1186/1471-2164-9-75
    [12] Deurenberg RH, Bathoorn E, Chlebowicz MA, et al. Application of next generation sequencing in clinical microbiology and infection prevention[J]. J Biotechnol, 2017, 243: 16-24. doi:  10.1016/j.jbiotec.2016.12.022
    [13] Carver TJ, Rutherford KM, Berriman M, et al. ACT: the Artemis Comparison Tool[J]. Bioinformatics, 2005, 21: 3422-3423. doi:  10.1093/bioinformatics/bti553
    [14] Carver T, Harris SR, Berriman M, et al. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data[J]. Bioinformatics, 2012, 28: 464-469. doi:  10.1093/bioinformatics/btr703
    [15] Carver T, Thomson N, Bleasby A, et al. DNA Plotter: circular and linear interactive genome visualization[J]. Bioinformatics, 2009, 25: 119-120. doi:  10.1093/bioinformatics/btn578
    [16] 张小江, 杨启文, 王瑶, 等. 2015年北京协和医院细菌耐药性监测[J].协和医学杂志, 2016, 7: 334-341. http://qikan.cqvip.com/Qikan/Article/Detail?id=670023038
    [17] Ranque S, Normand AC, Cassagne C, et al. MALDI-TOF mass spectrometry identification of filamentous fungi in the clinical laboratory[J]. Mycoses, 2014, 57: 135-140. doi:  10.1111/myc.12115
    [18] Wieser A, Schneider L, Jung J, et al. MALDI-TOF MS in microbiological diagnostics-identification of microorganisms and beyond (mini review)[J]. Appl Microbiol Biotechnol, 2012, 93: 965-974. doi:  10.1007/s00253-011-3783-4
    [19] Tang P, Croxen MA, Hasan MR, et al. Infection control in the new age of genomic epidemiology[J]. Am J Infect Control, 2017, 45: 170-179. doi:  10.1016/j.ajic.2016.05.015
    [20] Halachev MR, Chan JZ, Constantinidou CI, et al. Genomic epidemiology of a protracted hospital outbreak caused by multidrug-resistant Acinetobacter baumannii in Birmingham, England[J]. Genome Med, 2014, 6: 70. doi:  10.1186/s13073-014-0070-x
    [21] Lewis T, Loman NJ, Bingle L, et al. High-throughput whole-genome sequencing to dissect the epidemiology of Acineto-bacter baumannii isolates from a hospital outbreak[J]. J Hosp Infect, 2010, 75: 37-41. doi:  10.1016/j.jhin.2010.01.012
    [22] Harris SR, Cartwright EJ, Torok ME, et al. Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: a descriptive study[J]. Lancet Infect Dis, 2013, 13: 130-136. doi:  10.1016/S1473-3099(12)70268-2
    [23] Koser CU, Holden MT, Ellington MJ, et al. Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak[J]. N Engl J Med, 2012, 366: 2267-2275. doi:  10.1056/NEJMoa1109910
    [24] Wang X, Ma D, Huang X, et al. Complete genome analysis of Dengue virus type 3 isolated from the 2013 Dengue outbreak in Yunnan, China[J]. Virus Res, 2017, 238:164-170. doi:  10.1016/j.virusres.2017.06.015
    [25] Zhou K, Lokate M, Deurenberg RH, et al. Characterization of a CTX-M-15 producing Klebsiella pneumoniae outbreak strain assigned to a novel sequence type (1427)[J]. Front Microbiol, 2015, 6: 1250. http://europepmc.org/abstract/MED/26617589
    [26] Weterings V, Zhou K, Rossen JW, et al. An outbreak of colistin-resistant Klebsiella pneumoniae carbapenemase-produc-ing Klebsiella pneumoniae in the Netherlands (July to December 2013), with inter-institutional spread[J]. Eur J Clin Microbiol Infect Dis, 2015, 34: 1647-1655. doi:  10.1007/s10096-015-2401-2
    [27] Saeb AT, Abouelhoda M, Selvaraju M, et al. The use of next-generation sequencing in the identification of a fastidious pathogen: a lesson from a clinical setup[J]. Evol Bioinform Online, 2017, 12: 1176934316686072. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5395265/
    [28] Guo C, Zhong LL, Yi HL, et al.[Clinical value of fluorescence lateral flow immunoassay in diagnosis of influenza A in children][J]. Zhongguo Dang Dai Er Ke Za Zhi, 2016, 18: 1272-1276. http://www.en.cnki.com.cn/Article_en/CJFDTotal-DDKZ201612018.htm
    [29] Franz E, Delaquis P, Morabito S, et al. Exploiting the explosion of information associated with whole genome sequencing to tackle Shiga toxin-producing Escherichia coli(STEC) in global food production systems[J]. Int J Food Microbiol, 2014, 187: 57-72. doi:  10.1016/j.ijfoodmicro.2014.07.002
    [30] Laabei M, Recker M, Rudkin JK, et al. Predicting the virulence of MRSA from its genome sequence[J]. Genome Res, 2014, 24: 839-849. doi:  10.1101/gr.165415.113
    [31] Zhou K, Ferdous M, de Boer RF, et al. The mosaic genome structure and phylogeny of Shiga toxin-producing Escherichia coli O104:H4 is driven by short-term adaptation[J]. Clin Microbiol Infect, 2015, 21: 468. http://www.sciencedirect.com/science/article/pii/s1198743x14001621
    [32] Ferdous M, Zhou K, de Boer RF, et al. Comprehensive characterization of Escherichia coli O104:H4 isolated from patients in the netherlands[J]. Front Microbiol, 2015, 6: 1348. http://www.rug.nl/research/portal/publications/comprehensive-characterization-of-escherichia-coli-o104h4-isolated-from-patients-in-the-netherlands(2b0d76db-aa91-4138-8d92-2504025219b9).html
    [33] Willmann M, El-Hadidi M, Huson DH, et al. Antibiotic selection pressure determination through sequence-based metagenomics[J]. Antimicrob Agents Chemother, 2015, 59: 7335-7345. doi:  10.1128/AAC.01504-15
    [34] Falgenhauer L, Waezsada SE, Yao Y, et al. Colistin resistance gene mcr-1 in extended-spectrum beta-lactamase-producing and carbapenemase-producing Gram-negative bacteria in Germany[J]. Lancet Infect Dis, 2016, 16: 282-283. doi:  10.1016/S1473-3099(16)00009-8
    [35] Hasman H, Hammerum AM, Hansen F, et al. Detection of mcr-1 encoding plasmid-mediated colistin-resistant Escherichia coli isolates from human bloodstream infection and imported chicken meat, Denmark 2015[J]. Euro Surveill, 2015, 20. doi:  10.2807/1560-7917.ES.2015.20.49.30085
    [36] Kluytmans-van den Bergh MF, Huizinga P, Bonten MJ, et al. Presence of mcr-1-positive Enterobacteriaceae in retail chicken meat but not in humans in the Netherlands since 2009[J]. Euro Surveill, 2016, 21: 30149. doi:  10.2807/1560-7917.ES.2016.21.9.30149
  • 加载中
计量
  • 文章访问数:  382
  • HTML全文浏览量:  63
  • PDF下载量:  856
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-07
  • 刊出日期:  2018-09-30

目录

    /

    返回文章
    返回

    【温馨提醒】近日,《协和医学杂志》编辑部接到作者反映,有多名不法人员冒充期刊编辑发送见刊通知,鼓动作者添加微信,从而骗取版面费的行为。特提醒您,本刊与作者联系的方式均为邮件通知或电话,稿件进度通知邮箱为:mjpumch@126.com,编辑部电话为:010-69154261,请提高警惕,谨防上当受骗!如有任何疑问,请致电编辑部核实。谢谢!