-
摘要: 伴随人工智能的蓬勃发展, 图像智能识别技术可较大程度降低医生工作量的观点在业界已达成共识。但在综合诊疗上, 人工智能可否给予医生更好的意见和建议尚无定论。目前, 国内医学影像领域的人工智能绝大多数仅集中于单纯的图像识别, 缺乏医学数据的积累和对影像报告的分析, 人工智能和医学影像结合的模式刚刚开始, 我们期待科技的进步继续成为人类文明的动力之源。Abstract: With the rapid development of artificial intelligence, there is a general consensus of opinion that radiologists' workload can be dramatically reduced with the aid of intelligent image recognition. On the issues of comprehensive diagnosis and treatment, however, there is no certain answer whether or not artificial intelligence can provide better suggestions and comments. Currently, in China, the artificially intelligent imaging technique is mainly focused on simple image recognition, but there is a lack of experience in the accumulation of medical data and the analysis of radiological reports. The mode of integrating artificial intelligence with medical imaging science has just begun. We believe that the progress of science and technology will continue to be the engine of human civilization.
-
Key words:
- artificial intelligence /
- deep learning /
- medical imaging
-
[1] Kahn CE Jr. From images to actions:opportunities for artificial intelligence in radiology[J]. Radiology, 2017, 285:719-720. doi: 10.1148/radiol.2017171734 [2] Turing AM. Computing machinery and intelligence[J]. Mind, 1950, 59:433-460. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000002027644 [3] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521:436-444. doi: 10.1038/nature14539 [4] Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316:2402-2410. doi: 10.1001/jama.2016.17216 [5] 2018-2024年中国人工智能+医疗影像行业市场研究及投资前景预测报告[R]. http://www.chyxx.com/research/201710/578114.html. [6] Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313:504-507. doi: 10.1126/science.1127647 [7] Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542:115-118. doi: 10.1038/nature21056 [8] Komeda Y, Handa H, Watanabe T, et al. Computer-aided diagnosis based on convolutional neural network system for colorectal polyp classification:preliminary experience[J]. Oncology, 2017, 93:30-34. doi: 10.1159/000481227 [9] Ehteshami Bejnordi B, Veta M, Johannes van Diest P, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer[J]. JAMA, 2017, 318:2199-2210. doi: 10.1001/jama.2017.14585 -

计量
- 文章访问数: 373
- HTML全文浏览量: 58
- PDF下载量: 2421
- 被引次数: 0