留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

成纤维细胞生长因子在阿尔茨海默病中的作用机制

吴嘉静 李岩 梁玉霞 华卉娟 赵波

吴嘉静, 李岩, 梁玉霞, 华卉娟, 赵波. 成纤维细胞生长因子在阿尔茨海默病中的作用机制[J]. 协和医学杂志. doi: 10.12290/xhyxzz.2023-0641
引用本文: 吴嘉静, 李岩, 梁玉霞, 华卉娟, 赵波. 成纤维细胞生长因子在阿尔茨海默病中的作用机制[J]. 协和医学杂志. doi: 10.12290/xhyxzz.2023-0641
WU Jiajing, LI Yan, LIANG Yuxia, HUA Huijuan, ZHAO Bo. Mechanism of Fibroblast Growth Factor in Alzheimer's Disease[J]. Medical Journal of Peking Union Medical College Hospital. doi: 10.12290/xhyxzz.2023-0641
Citation: WU Jiajing, LI Yan, LIANG Yuxia, HUA Huijuan, ZHAO Bo. Mechanism of Fibroblast Growth Factor in Alzheimer's Disease[J]. Medical Journal of Peking Union Medical College Hospital. doi: 10.12290/xhyxzz.2023-0641

成纤维细胞生长因子在阿尔茨海默病中的作用机制

doi: 10.12290/xhyxzz.2023-0641
基金项目: 

联勤保障部队第九四〇医院研究生导师专项项目(2022yxky012,2023yxky008)

详细信息
    通讯作者:

    赵波,E-mail:drzhaobo1979@163.com

  • 中图分类号: R741

Mechanism of Fibroblast Growth Factor in Alzheimer's Disease

Funds: 

Postgraduate Tutor Special Project of The 940th Hospital of Joint Logistics Support force of Chinese People’s Liberation Army (2022yxky012,2023yxky008)

  • 摘要: 阿尔茨海默病(Alzheimer's disease,AD)是最常见的神经退行性疾病,目前已呈现 出年轻化趋势,多数患者一旦发病,认知功能将呈进行性减退,给社会和家庭带来沉重负担。研究表明,成纤维细胞生长因子( fibroblastgrowth factor,FGF)可通过多种机制参与 AD 的发病过程。本文就 FGF 在 AD 中的作用机制进行综述,为阐明 AD 的发病机制及早期诊断提供新思路。
  • [1] 2023 Alzheimer's disease facts and figures. Alzheimers Dement. 2023. 19(4):1598-1695.
    [2] Ranasinghe KG, Petersen C, Kudo K, et al. Reduced synchrony in alpha oscillations during life predicts post mortem neurofibrillary tangle density in early-onset and atypical Alzheimer's disease. Alzheimers Dement. 2021. 17(12):2009-2019.
    [3] Moonen S, Koper MJ, Van Schoor E, et al. Pyroptosis in Alzheimer's disease:cell type-specific activation in microglia, astrocytes and neurons[J]. Acta Neuropathol, 2023,145(2):175-195.
    [4] Xian YF, Qu C, Liu Y, et al. Magnolol Ameliorates Behavioral Impairments and Neuropathology in a Transgenic Mouse Model of Alzheimer's Disease. Oxid Med Cell Longev. 2020. 2020:5920476.
    [5] Xie Y, Su N, Yang J, et al. FGF/FGFR signaling in health and disease[J]. Signal Transduct Target Ther, 2020,5(1):181.
    [6] Sacco A, Federico C, Giacomini A, et al. Halting the FGF/FGFR axis leads to antitumor activity in Waldenström macroglobulinemia by silencing MYD88. Blood. 2021. 137(18):2495-2508.
    [7] Lathe R, St Clair D. Programmed ageing:decline of stem cell renewal, immunosenescence, and Alzheimer's disease. Biol Rev Camb Philos Soc. 2023.
    [8] Lottini G, Plicanti E, Lai M, Quaranta P, Pistello M, Freer G. Canonical fibroblast growth factors in viral infection. Rev Med Virol. 2023:e2452.
    [9] Klimaschewski L, Claus P. Fibroblast Growth Factor Signalling in the Diseased Nervous System. Mol Neurobiol. 2021. 58(8):3884-3902.
    [10] Bayle A, Martin-Romano P, Loriot Y. FIGHT against FGF/FGFR alterations:what are the next steps. Ann Oncol. 2022. 33(5):460-462.
    [11] J., Schlessinger. Receptor Tyrosine Kinases:Legacy of the First Two Decades. Cold Spring Harbor Perspectives in Biology. 2014.
    [12] Giacomini A, Grillo E, Rezzola S, et al. The FGF/FGFR system in the physiopathology of the prostate gland. Physiol Rev. 2021. 101(2):569-610.
    [13] Liu Y, Yu F, Zhang B, et al. Improving the protective effects of aFGF for peripheral nerve injury repair using sulfated chitooligosaccharides. Asian J Pharm Sci. 2019. 14(5):511-520.
    [14] Dailey L, Ambrosetti D, Mansukhani A, Basilico C. Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev. 2005. 16(2):233-47.
    [15] Dhlamini Q, Wang W, Feng G, et al. FGF1 alleviates LPS-induced acute lung injury via suppression of inflammation and oxidative stress[J]. Mol Med, 2022,28(1):73.
    [16] Park HB, Baek KH. E3 ligases and deubiquitinating enzymes regulating the MAPK signaling pathway in cancers[J]. Biochim Biophys Acta Rev Cancer, 2022,1877(3):188736.
    [17] Zhang B, Zhao J, Wang Z, Xu L, Liu A, Du G. DL0410 attenuates oxidative stress and neuroinflammation via BDNF/TrkB/ERK/CREB and Nrf2/HO-1 activation. Int Immunopharmacol. 2020. 86:106729.
    [18] Zhan-Qiang H, Hai-Hua Q, Chi Z, et al. miR-146a aggravates cognitive impairment and Alzheimer disease-like pathology by triggering oxidative stress through MAPK signaling[J]. Neurologia (Engl Ed), 2021
    [19] Luo Q, Schnöder L, Hao W, et al. p38α-MAPK-deficient myeloid cells ameliorate symptoms and pathology of APP-transgenic Alzheimer's disease mice[J]. Aging Cell, 2022,21(8):e13679.
    [20] Fakhri S, Iranpanah A, Gravandi MM, et al. Natural products attenuate PI3K/Akt/mTOR signaling pathway:A promising strategy in regulating neurodegeneration[J]. Phytomedicine, 2021,91:153664.
    [21] Peng X, Guo H, Zhang X, et al. TREM2 Inhibits Tau Hyperphosphorylation and Neuronal Apoptosis via the PI3K/Akt/GSK-3β Signaling Pathway In vivo and In vitro[J]. Mol Neurobiol, 2023,60(5):2470-2485.
    [22] Wang S, Sudan R, Peng V, et al. TREM2 drives microglia response to amyloid-β via SYK-dependent and-independent pathways. Cell. 2022. 185(22):4153-4169.e19.
    [23] Singh N, Das B, Zhou J, et al. Targeted BACE-1 inhibition in microglia enhances amyloid clearance and improved cognitive performance[J]. Sci Adv, 2022,8(29):eabo3610.
    [24] Wang GQ, Zhou P, Xie DJ, et al.[Effects of Huangpu Tongqiao Capsules on EGFR-PLCγ signal pathway of hippocampus in rats with Alzheimer's disease]. Zhongguo Zhong Yao Za Zhi. 2020. 45(9):2165-2171.
    [25] Chen YS, Zhang SM, Tan W, et al. Early 7,8-Dihydroxyflavone Administration Ameliorates Synaptic and Behavioral Deficits in the Young FXS Animal Model by Acting on BDNF-TrkB Pathway[J]. Mol Neurobiol, 2023,60(5):2539-2552.
    [26] Mashayekhi F, Hadavi M, Vaziri HR, Naji M. Increased acidic fibroblast growth factor concentrations in the serum and cerebrospinal fluid of patients with Alzheimer's disease. J Clin Neurosci. 2010. 17(3):357-9.
    [27] Peng D, Wang Y, Xiao Y, et al. Extracellular vesicles derived from astrocyte-treated with haFGF (14-154) attenuate Alzheimer phenotype in AD mice. Theranostics. 2022. 12(8):3862-3881.
    [28] Meng T, Cao Q, Lei P, et al. Tat-haFGF (14-154) Upregulates ADAM10 to Attenuate the Alzheimer Phenotype of APP/PS1 Mice through the PI3K-CREB-IRE1α/XBP1 Pathway. Mol Ther Nucleic Acids. 2017. 7:439-452.
    [29] Chang YT, Kazui H, Ikeda M, et al. Genetic Interaction of APOE and FGF1 is Associated with Memory Impairment and Hippocampal Atrophy in Alzheimer's Disease. Aging Dis. 2019. 10(3):510-519.
    [30] Wheeler MA, Jaronen M, Covacu R, et al. Environmental Control of Astrocyte Pathogenic Activities in CNS Inflammation. Cell. 2019. 176(3):581-596.e18.
    [31] Woodbury ME, Ikezu T. Fibroblast growth factor-2 signaling in neurogenesis and neurodegeneration. J Neuroimmune Pharmacol. 2014. 9(2):92-101.
    [32] Katsouri L, Ashraf A, Birch AM, Lee KK, Mirzaei N, Sastre M. Systemic administration of fibroblast growth factor-2(FGF2) reduces BACE1 expression and amyloid pathology in APP23 mice. Neurobiol Aging. 2015. 36(2):821-31.
    [33] Chen X, Li Z, Cheng Y, Kardami E, Loh YP. Low and High Molecular Weight FGF-2 Have Differential Effects on Astrocyte Proliferation, but Are Both Protective Against Aβ-Induced Cytotoxicity. Front Mol Neurosci. 2019. 12:328.
    [34] Zhang C, Han M, Wu S. Silencing fibroblast growth factor 7 inhibits krypton laser-induced choroidal neovascularization in a rat model. J Cell Biochem. 2019. 120(8):13792-13801.
    [35] Huang T, Wang L, Liu D, et al. FGF7/FGFR2 signal promotes invasion and migration in human gastric cancer through upregulation of thrombospondin-1. Int J Oncol. 2017. 50(5):1501-1512.
    [36] Takaya K, Aramaki-Hattori N, Sakai S, Okabe K, Asou T, Kishi K. Fibroblast Growth Factor 7 Suppresses Fibrosis and Promotes Epithelialization during Wound Healing in Mouse Fetuses. Int J Mol Sci. 2022. 23(13).
    [37] Abubakar MB, Sanusi KO, Ugusman A, et al. Alzheimer's Disease:An Update and Insights Into Pathophysiology. Front Aging Neurosci. 2022. 14:742408.
    [38] Samadian M, Gholipour M, Hajiesmaeili M, et al. The Eminent Role of microRNAs in the Pathogenesis of Alzheimer's Disease. Front Aging Neurosci, 2021,13:641080.
    [39] Chen W, Wu L, Hu Y, et al. MicroRNA-107 Ameliorates Damage in a Cell Model of Alzheimer's Disease by Mediating the FGF7/FGFR2/PI3K/Akt Pathway. J Mol Neurosci. 2020. 70(10):1589-1597.
    [40] Lu H, Yin M, Wang L, et al. FGF13 interaction with SHCBP1 activates AKT-GSK3α/β signaling and promotes the proliferation of A549 cells. Cancer Biol Ther. 2020. 21(11):1014-1024.
    [41] Pan X, Zhao J, Zhou Z, et al. 5'-UTR SNP of FGF13 causes translational defect and intellectual disability. Elife. 2021. 10.
    [42] Tfilin M, Turgeman G. Interleukine-17 Administration Modulates Adult Hippocampal Neurogenesis and Improves Spatial Learning in Mice. J Mol Neurosci. 2019. 69(2):254-263.
    [43] Li RM, Xiao L, Zhang T, et al. Overexpression of fibroblast growth factor 13 ameliorates amyloid-β-induced neuronal damage. Neural Regen Res, 2023,18(6):1347-1353.
    [44] Wang L, Jing R, Wang X, et al. A method for the expression of fibroblast growth factor 14 and assessment of its neuroprotective effect in an Alzheimer's disease model. Ann Transl Med. 2021. 9(12):994.
    [45] Hsu WJ, Wildburger NC, Haidacher SJ, et al. PPARgamma agonists rescue increased phosphorylation of FGF14 at S226 in the Tg2576 mouse model of Alzheimer's disease. Exp Neurol. 2017. 295:1-17.
    [46] Conte M, Sabbatinelli J, Chiariello A, et al. Disease-specific plasma levels of mitokines FGF21, GDF15, and Humanin in type II diabetes and Alzheimer's disease in comparison with healthy aging. Geroscience. 2021. 43(2):985-1001.
    [47] Kakoty V, K C S, Tang RD, Yang CH, Dubey SK, Taliyan R. Fibroblast growth factor 21 and autophagy:A complex interplay in Parkinson disease. Biomed Pharmacother. 2020. 127:110145.
    [48] Sun Y, Wang Y, Chen ST, et al. Modulation of the Astrocyte-Neuron Lactate Shuttle System contributes to Neuroprotective action of Fibroblast Growth Factor 21. Theranostics. 2020. 10(18):8430-8445.
    [49] Chen S, Chen ST, Sun Y, et al. Fibroblast growth factor 21 ameliorates neurodegeneration in rat and cellular models of Alzheimer's disease. Redox Biol. 2019. 22:101133.
    [50] Drew DA, Katz R, Kritchevsky S, et al. Fibroblast Growth Factor 23 and Blood Pressure in Older Adults:The Health, Aging, and Body Composition Study. Hypertension. 2020. 76(1):236-243.
    [51] Laszczyk AM, Nettles D, Pollock TA, et al. FGF-23 Deficiency Impairs Hippocampal-Dependent Cognitive Function. eNeuro. 2019. 6(2).
    [52] McGrath ER, Himali JJ, Levy D, et al. Circulating fibroblast growth factor 23 levels and incident dementia:The Framingham heart study. PLoS One. 2019. 14(3):e0213321.
    [53] Li B, Zhou M, Peng J, et al. Mechanism of the Fibroblast Growth Factor 23/α-Klotho Axis in Peripheral Blood Mononuclear Cell Inflammation in Alzheimer's Disease. Immunol Invest. 2022. 51(5):1471-1484.
  • 加载中
计量
  • 文章访问数:  23
  • HTML全文浏览量:  2
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-19
  • 录用日期:  2024-03-01
  • 网络出版日期:  2024-04-24

目录

    /

    返回文章
    返回

    【温馨提醒】近日,《协和医学杂志》编辑部接到作者反映,有多名不法人员冒充期刊编辑发送见刊通知,鼓动作者添加微信,从而骗取版面费的行为。特提醒您,本刊与作者联系的方式均为邮件通知或电话,稿件进度通知邮箱为:mjpumch@126.com,编辑部电话为:010-69154261,请提高警惕,谨防上当受骗!如有任何疑问,请致电编辑部核实。谢谢!