留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

卒中后中枢性疼痛的诊断及治疗进展

宋淑佳 孙琛 裴丽坚 徐蔚海 黄宇光

宋淑佳, 孙琛, 裴丽坚, 徐蔚海, 黄宇光. 卒中后中枢性疼痛的诊断及治疗进展[J]. 协和医学杂志, 2024, 15(2): 265-271. doi: 10.12290/xhyxzz.2023-0591
引用本文: 宋淑佳, 孙琛, 裴丽坚, 徐蔚海, 黄宇光. 卒中后中枢性疼痛的诊断及治疗进展[J]. 协和医学杂志, 2024, 15(2): 265-271. doi: 10.12290/xhyxzz.2023-0591
SONG Shujia, SUN Chen, PEI Lijian, XU Weihai, HUANG Yuguang. Progress in Diagnosis and Treatment of Central Post-stroke Pain[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(2): 265-271. doi: 10.12290/xhyxzz.2023-0591
Citation: SONG Shujia, SUN Chen, PEI Lijian, XU Weihai, HUANG Yuguang. Progress in Diagnosis and Treatment of Central Post-stroke Pain[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(2): 265-271. doi: 10.12290/xhyxzz.2023-0591

卒中后中枢性疼痛的诊断及治疗进展

doi: 10.12290/xhyxzz.2023-0591
基金项目: 

中央高水平医院临床科研专项 2022-PUMCH-B-006

详细信息
    通讯作者:

    裴丽坚, E-mail: hazelbeijing@vip.163.com

    黄宇光, E-mail: garypumch@163.com

  • 中图分类号: R743.3;R441.1

Progress in Diagnosis and Treatment of Central Post-stroke Pain

Funds: 

National High Level Hospital Clinical Research Funding 2022-PUMCH-B-006

More Information
  • 摘要: 卒中后中枢性疼痛(central post-stroke pain, CPSP)是一种发生于脑卒中后的神经病理性疼痛综合征,其特征为出现疼痛或感觉异常的身体部位由出现血管损伤的大脑区域支配。CPSP患者常伴有焦虑、抑郁等情绪障碍,导致其生活质量降低。然而目前CPSP的发生机制仍未完全阐明,以致临床诊断率不高,常用治疗手段效果欠佳。本文从CPSP的临床特征、流行病学、发生机制及治疗手段等方面展开综述,以期为CPSP的诊断及有效治疗提供参考。
    作者贡献:宋淑佳负责撰写论文;孙琛负责收集资料;裴丽坚、徐蔚海、黄宇光负责提出选题思路、修订论文。
    利益冲突:所有作者均声明不存在利益冲突
  • [1] Klit H, Finnerup N B, Jensen T S. Central post-stroke pain: clinical characteristics, pathophysiology, and management[J]. Lancet Neurol, 2009, 8(9): 857-868. doi:  10.1016/S1474-4422(09)70176-0
    [2] Treede R D, Jensen T S, Campbell J N, et al. Neuropathic pain: redefinition and a grading system for clinical and research purposes[J]. Neurology, 2008, 70(18): 1630-1635. doi:  10.1212/01.wnl.0000282763.29778.59
    [3] De Smet Y. The thalamic syndrome of Déjérine-Roussy. Prolegomenon[J]. Rev Neurol (Paris), 1986, 142(4): 259-266.
    [4] Ali M, Tibble H, Brady M C, et al. Prevalence, trajectory, and predictors of poststroke pain: retrospective analysis of pooled clinical trial data set[J]. Stroke, 2023, 54(12): 3107-3116. doi:  10.1161/STROKEAHA.123.043355
    [5] Naess H, Lunde L, Brogger J. The effects of fatigue, pain, and depression on quality of life in ischemic stroke patients: the Bergen Stroke Study[J]. Vasc Health Risk Manag, 2012, 8: 407-413.
    [6] Liampas A, Velidakis N, Georgiou T, et al. Prevalence and management challenges in central Post-Stroke neuropathic pain: a systematic review and meta-analysis[J]. Adv Ther, 2020, 37(7): 3278-3291. doi:  10.1007/s12325-020-01388-w
    [7] Grönberg A, Henriksson I, Stenman M, et al. Incidence of aphasia in ischemic stroke[J]. Neuroepidemiology, 2022, 56(3): 174-182. doi:  10.1159/000524206
    [8] Nesbitt J, Moxham S, Ramadurai G, et al. Improving pain assessment and managment in stroke patients[J]. BMJ Qual Improv Rep, 2015, 4(1): u203375. w3105. doi:  10.1136/bmjquality.u203375.w3105
    [9] Saadé N E, Jabbur S J. Nociceptive behavior in animal models for peripheral neuropathy: spinal and supraspinal mechanisms[J]. Prog Neurobiol, 2008, 86(1): 22-47. doi:  10.1016/j.pneurobio.2008.06.002
    [10] Cheng Y P, Wu B Q, Huang J J, et al. Research progress on the mechanisms of central Post-Stroke pain: a review[J]. Cell Mol Neurobiol, 2023, 43(7): 3083-3098. doi:  10.1007/s10571-023-01360-6
    [11] Mohanan A T, Nithya S, Nomier Y, et al. Stroke-induced central pain: overview of the mechanisms, management, and emerging targets of central post-stroke pain[J]. Pharmaceuticals (Basel), 2023, 16(8): 1103. doi:  10.3390/ph16081103
    [12] Yam M F, Loh Y C, Tan C S, et al. General pathways of pain sensation and the major neurotransmitters involved in pain regulation[J]. Int J Mol Sci, 2018, 19(8): 2164. doi:  10.3390/ijms19082164
    [13] Krause T, Brunecker P, Pittl S, et al. Thalamic sensory strokes with and without pain: differences in lesion patterns in the ventral posterior thalamus[J]. J Neurol Neurosurg Psychiatry, 2012, 83(8): 776-784. doi:  10.1136/jnnp-2011-301936
    [14] Wasserman J K, Koeberle P D. Development and characterization of a hemorrhagic rat model of central post-stroke pain[J]. Neuroscience, 2009, 161(1): 173-183. doi:  10.1016/j.neuroscience.2009.03.042
    [15] Treister A K, Hatch M N, Cramer S C, et al. Demystifying poststroke pain: from etiology to treatment[J]. PM R, 2017, 9(1): 63-75. doi:  10.1016/j.pmrj.2016.05.015
    [16] Morishita T, Inoue T. Brain stimulation therapy for central post-stroke pain from a perspective of interhemispheric neural network remodeling[J]. Front Hum Neurosci, 2016, 10: 166.
    [17] Betancur D F A, Tarragó M D G L, Torres I L D S, et al. Central post-stroke pain: an integrative review of somatotopic damage, clinical symptoms, and neurophysiological measures[J]. Front Neurol, 2021, 12: 678198. doi:  10.3389/fneur.2021.678198
    [18] Gritsch S, Bali K K, Kuner R, et al. Functional characterization of a mouse model for central post-stroke pain[J]. Mol Pain, 2016, 12: 1744806916629049. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10480625
    [19] Di Virgilio F, Dal Ben D, Sarti A C, et al. The P2X7 receptor in infection and inflammation[J]. Immunity, 2017, 47(1): 15-31. doi:  10.1016/j.immuni.2017.06.020
    [20] Wan L, Li Z F, Liu T T, et al. Epoxyeicosatrienoic acids: Emerging therapeutic agents for central post-stroke pain[J]. Pharmacol Res, 2020, 159: 104923. doi:  10.1016/j.phrs.2020.104923
    [21] Kuan Y H, Shih H C, Tang S C, et al. Targeting P(2)X(7) receptor for the treatment of central post-stroke pain in a rodent model[J]. Neurobiol Dis, 2015, 78: 134-145. doi:  10.1016/j.nbd.2015.02.028
    [22] Shih H C, Kuan Y H, Shyu B C. Targeting brain-derived neurotrophic factor in the medial thalamus for the treatment of central poststroke pain in a rodent model[J]. Pain, 2017, 158(7): 1302-1313. doi:  10.1097/j.pain.0000000000000915
    [23] Yang F, Luo W J, Sun W, et al. SDF1-CXCR4 signaling maintains central post-stroke pain through mediation of glial-neuronal interactions[J]. Front Mol Neurosci, 2017, 10: 226. doi:  10.3389/fnmol.2017.00226
    [24] Huang T F, Fu G L, Gao J, et al. Fgr contributes to hemorrhage-induced thalamic pain by activating NF-κB/ERK1/2 pathways[J]. JCI Insight, 2020, 5(20): e139987. doi:  10.1172/jci.insight.139987
    [25] Li H L, Lin M, Tan X P, et al. Role of sensory pathway injury in central post-stroke pain: a narrative review of its patho-genetic mechanism[J]. J Pain Res, 2023, 16: 1333-1343. doi:  10.2147/JPR.S399258
    [26] Matsuura W, Harada S, Liu K Y, et al. Evidence of a role for spinal HMGB1 in ischemic stress-induced mechanical allodynia in mice[J]. Brain Res, 2018, 1687: 1-10. doi:  10.1016/j.brainres.2018.02.026
    [27] Matsuura W, Nakamoto K, Tokuyama S. The involvement of DDAH1 in the activation of spinal NOS signaling in early stage of mechanical allodynia induced by exposure to ischemic stress in mice[J]. Biol Pharm Bull, 2019, 42(9): 1569-1574. doi:  10.1248/bpb.b19-00371
    [28] Harada S, Matsuura W, Takano M, et al. Proteomic profil-ing in the spinal cord and sciatic nerve in a global cerebral Ischemia-Induced mechanical allodynia mouse model[J]. Biol Pharm Bull, 2016, 39(2): 230-238. doi:  10.1248/bpb.b15-00647
    [29] Wang G X, Thompson S M. Maladaptive homeostatic plasticity in a rodent model of central pain syndrome: thalamic hyperexcitability after spinothalamic tract lesions[J]. J Neurosci, 2008, 28(46): 11959-11969. doi:  10.1523/JNEUROSCI.3296-08.2008
    [30] Willoch F, Schindler F, Wester H J, et al. Central poststroke pain and reduced opioid receptor binding within pain processing circuitries: a [11C]diprenorphine PET study[J]. Pain, 2004, 108(3): 213-220. doi:  10.1016/j.pain.2003.08.014
    [31] Krause T, Asseyer S, Taskin B, et al. The cortical signature of central poststroke pain: gray matter decreases in somatosensory, insular, and prefrontal cortices[J]. Cereb Cortex, 2016, 26(1): 80-88. doi:  10.1093/cercor/bhu177
    [32] Helmchen C, Lindig M, Petersen D, et al. Disappearance of central thalamic pain syndrome after contralateral parietal lobe lesion: implications for therapeutic brain stimulation[J]. Pain, 2002, 98(3): 325-330. doi:  10.1016/S0304-3959(02)00139-2
    [33] Choi H R, Aktas A, Bottros M M. Pharmacotherapy to manage central post-stroke pain[J]. CNS Drugs, 2021, 35(2): 151-160. doi:  10.1007/s40263-021-00791-3
    [34] Flaster M, Meresh E, Rao M, et al. Central poststroke pain: current diagnosis and treatment[J]. Top Stroke Rehabil, 2013, 20(2): 116-123. doi:  10.1310/tsr2002-116
    [35] Hesami O, Gharagozli K, Beladimoghadam N, et al. The efficacy of gabapentin in patients with central post-stroke pain[J]. Iran J Pharm Res, 2015, 14(Suppl): 95-101.
    [36] Serpell M G. Gabapentin in neuropathic pain syndromes: a randomised, double-blind, placebo-controlled trial[J]. Pain, 2002, 99(3): 557-566. doi:  10.1016/S0304-3959(02)00255-5
    [37] Radiansyah R S, Hadi D W. Repetitive transcranial magnetic stimulation in central post-stroke pain: current status and future perspective[J]. Korean J Pain, 2023, 36(4): 408-424. doi:  10.3344/kjp.23220
    [38] Ohn S H, Chang W H, Park C H, et al. Neural correlates of the antinociceptive effects of repetitive transcranial magnetic stimulation on central pain after stroke[J]. Neurorehabil Neural Repair, 2012, 26(4): 344-352. doi:  10.1177/1545968311423110
    [39] Leung A, Donohue M, Xu R H, et al. rTMS for suppressing neuropathic pain: a meta-analysis[J]. J Pain, 2009, 10(12): 1205-1216. doi:  10.1016/j.jpain.2009.03.010
    [40] Pan L J, Zhu H Q, Zhang X A, et al. The mechanism and effect of repetitive transcranial magnetic stimulation for post-stroke pain[J]. Front Mol Neurosci, 2022, 15: 1091402.
    [41] Yang S, Chang M C. Effect of repetitive transcranial magnetic stimulation on pain management: a systematic narrative review[J]. Front Neurol, 2020, 11: 114. doi:  10.3389/fneur.2020.00114
    [42] Ramger B C, Bader K A, Davies S P, et al. Effects of non-invasive brain stimulation on clinical pain intensity and experimental pain sensitivity among individuals with central post-stroke pain: a systematic review[J]. J Pain Res, 2019, 12: 3319-3329. doi:  10.2147/JPR.S216081
    [43] Baik J S, Yang J H, Ko S H, et al. Exploring the potential of transcranial direct current stimulation for relieving central post-stroke pain: a randomized controlled pilot study[J]. Life (Basel), 2023, 13(5): 1172.
    [44] David M C M M, Moraes A A D, Costa M L D, et al. Transcranial direct current stimulation in the modulation of neuropathic pain: a systematic review[J]. Neurol Res, 2018, 40(7): 555-563.
    [45] Lempka S F, Malone D A, Jr, Hu B, et al. Randomized clinical trial of deep brain stimulation for poststroke pain[J]. Ann Neurol, 2017, 81(5): 653-663. doi:  10.1002/ana.24927
    [46] Boccard S G J, Prangnell S J, Pycroft L, et al. Long-term results of deep brain stimulation of the anterior cingulate cortex for neuropathic pain[J]. World Neurosurg, 2017, 106: 625-637. doi:  10.1016/j.wneu.2017.06.173
  • 加载中
计量
  • 文章访问数:  1125
  • HTML全文浏览量:  11
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-05
  • 录用日期:  2024-01-11
  • 刊出日期:  2024-03-30

目录

    /

    返回文章
    返回

    【通知】尊敬的读者、作者及编者:为做节日期间网络数据安全保障工作,本网站自2024.5.1日至5.5日期间仅22:00-6:00开放,其他时段访问受限,给您带来不便敬请谅解。编辑部恭祝您节日愉快!