The Standard for Diagnosis and Treatment of Chinese Colorectal Cancer(2023 Version)
-
摘要: 结直肠癌是我国常见的恶性肿瘤之一。近年来,我国结直肠癌发病率和死亡率均保持上升趋势。2020中国癌症统计报告显示,我国结直肠癌发病率和死亡率在全部恶性肿瘤中分别位居第2和第5位,其中新发病例55.5万例,死亡病例28.6万例。中国已成为全球结直肠癌每年新发病例数和死亡病例数最多的国家,结直肠癌严重影响和威胁我国居民身体健康。《中国结直肠癌诊疗规范(2023版)》既参考了国际指南的更新内容,更结合了中国的具体国情和临床实践,同时囊括了近些年来我国结直肠领域的重要进展和循证医学证据。该诊疗规范的发布将推动我国结直肠癌整体诊疗水平的进步,改善患者的生存和预后,造福结直肠癌患者及其家庭。利益冲突:所有作者均声明不存在利益冲突核心专家组 (按姓氏笔画排序):总顾问:孙燕顾问:郑树,万德森组长:顾晋,汪建平外科组:组长:王锡山,汪建平,张苏展,顾晋,蔡三军;组员:丁克峰,孔大陆,王自强,王贵玉,王贵英,王振宁,兰平,许剑民,陈功,肖毅,张忠涛,房学东,赵任,贾宝庆,徐忠法,裴海平,潘志忠,燕锦;秘书:刘骞,练磊,彭亦凡内科组:组长:沈琳,徐瑞华,李进;组员:巴一,邓艳红,白春梅,白莉,刘天舒,刘云鹏,李健,张艳桥,周爱萍,徐建明,陶敏,袁响林,袁瑛,潘宏铭;秘书:王峰,王晰程放疗组:组长:金晶,章真;组员:王仁本;王维虎;朱远;朱莉;刘士新;李永恒;吴君心;张红雁;岳金波;高远红;蔡勇;秘书:夏凡;唐源病理组:组长:梁智勇;组员:孙燕,邹霜梅,金木兰,梁莉,盛伟琪,薛卫成;秘书:周炜洵影像组:组长:孙应实;组员:于韬,王屹,张晓燕,周智洋,董江宁;秘书:王娟;孙瑞佳秘书组:组长:王晰程,刘骞,彭亦凡;组员:王峰,王娟,孙瑞佳,周炜洵,练磊,夏凡,唐源
-
表 1 直肠癌MRI结构式报告
姓名 性别 年龄 影像号 病案号 检查日期 检查项目: 直肠MRI 临床诊断 肿瘤T分期 病变定位 腹膜反折 [ ]腹膜反折以上、未受累 [ ]腹膜反折以下、未受累 [ ]跨腹膜反折、未受累 [ ]腹膜反折受累 参照肿瘤下缘至肛直肠环(ARG)距离定位 [ ]上段直肠癌:10~15 cm [ ]中段直肠癌:5~10 cm [ ]下段直肠癌:<5 cm 肿瘤下缘距肛直肠环距离___cm 大小测量 肿块型 斜轴位测量:___mm×___mm矢状位测量(纵径):___mm 肠壁浸润型 斜轴位测量肠壁最厚:___mm矢状位测量(纵径):___mm 病变环绕肠周径 <1/4周1/4~<1/2周1/2~<3/4周3/4~1周 肿瘤浸润程度描述T分期 T1:肿瘤侵犯至黏膜下层 T2:肿瘤侵犯固有肌层,但未穿透肌外膜 T3:肿瘤突破固有肌层外膜,到达直肠周围系膜脂肪内[ ]_mm T3a:肿瘤突破肌层<5 mm T3b:肿瘤突破肌层5~10 mm T3c:肿瘤突破肌层>10 mm T4a:肿瘤侵透腹膜或浆膜(上段直肠) T4b:肿瘤侵犯毗邻脏器 备注: 淋巴结N分期(需综合淋巴结边缘、形态、内部信号特征评价) [ ]直肠上动脉周围LN 可疑淋巴结数量: 最大短径: [ ]直肠系膜筋膜内LN 可疑淋巴结数量: 最大短径: [ ]髂内血管旁LN 可疑淋巴结数量: 最大短径: 侧方淋巴结 [ ]闭孔动脉旁LN 可疑淋巴结数量: 最大短径: [ ]髂内血管旁LN 可疑淋巴结数量: 最大短径: 备注: M分期 [ ]腹股沟LN 可疑淋巴结数量: 最大短径: 备注: 直肠系膜筋膜(MRF)状态 [ ]阳性:前、后、左、右 导致MRF阳性的原因:肿瘤、淋巴结、癌结节、阳性EMVI [ ]阴性 备注: 直肠壁外血管侵犯(EMVI) [ ]有:前、后、左、右 部位:参考肿瘤定位(上段、中段、下段) [ ]无 备注: 其他异常征象[ ]提示黏液腺癌可能 诊断意见:mrT_N_M_,MRF(),EMVI() 表 2 结肠癌CT结构式报告
姓名 性别 年龄 影像号: 检查日期: 检查项目: 结肠CT 临床诊断: 肿瘤位置 左半结肠[ ] 右半结肠[ ] 盲肠 [ ] 升结肠 [ ] 结肠肝曲 [ ] 横结肠 [ ] 结肠脾曲 [ ] 降结肠 [ ] 乙状结肠 [ ] 大小测量 肿块型 肿块大小:__mm×__mm 肠壁浸润型 肿瘤最厚层面:__mm 肿瘤侵犯腹膜后手术切缘(RSM,仅适用于升/降段) [ ] 肿瘤分期 侵犯至黏膜下层(T1) [ ] 肿瘤侵犯固有肌层,但未穿透固有肌层(T2) [ ] 肿瘤突破固有肌层(T3) < 5 mm [ ] 肿瘤突破固有肌层(T3)≥5 mm [ ] 肿瘤侵犯超出腹膜覆盖的表面(T4a) [ ] 侵犯邻近脏器(T4b) [ ] 淋巴结 区域可疑阳性淋巴结数目___最大短径___ 腹膜后可疑阳性淋巴结数目___最大短径___ 肠壁外血管侵犯(EMVI) 远处转移 肝脏转移 [ ] 肺部转移 左肺[ ] 右肺[ ] 腹膜种植转移 [ ] 其他转移病变 [ ] 其他异常征象 肿瘤穿孔 [ ] 肠梗阻 [ ] 诊断意见:ctT_ N_ M_,EMVI() 表 3 肝转移瘤CT结构式报告
1.脂肪肝:有[ ] 无[ ] 2.肝转移瘤数目: 1~3个[ ] 4~7个[ ] 8个及以上[ ] 3.肝转移瘤大小:最大病灶___mm 位于肝脏___段 4.病灶分布: 尾叶 S1[ ] 左叶 S2[ ] S3[ ] S4[ ] 右叶 S5[ ] S6[ ] S7[ ] S8[ ] 5.与重要血管的关系: 门脉右支 主干 未见显示[ ] 推移移位[ ] 紧邻[ ] 分界清楚[ ] 分支 未见显示[ ] 推移移位[ ] 紧邻[ ] 分界清楚[ ] 门脉左支 主干 未见显示[ ] 推移移位[ ] 紧邻[ ] 分界清楚[ ] 分支 未见显示[ ] 推移移位[ ] 紧邻[ ] 分界清楚[ ] 肝右静脉 未见显示[ ] 推移移位[ ] 紧邻[ ] 分界清楚[ ] 肝中静脉 未见显示[ ] 推移移位[ ] 紧邻[ ] 分界清楚[ ] 肝左静脉 未见显示[ ] 推移移位[ ] 紧邻[ ] 分界清楚[ ] 下腔静脉 未见显示[ ] 推移移位[ ] 紧邻[ ] 分界清楚[ ] 6.肝门区淋巴结:有[ ] 无[ ] 最大LN大小____mm × ____mm 7.血管变异起源: 肝左动脉:肝固有动脉[ ] 胃左动脉[ ] 肝右动脉:肝固有动脉[ ] 肠系膜上动脉[ ] 肝总动脉:腹腔干[ ] 肠系膜上动脉[ ] 腹主动脉[ ] 8.不确定转移灶:无[ ] 有[ ] 9.不确定转移灶位置分布: 尾叶 S1[ ] 左叶 S2[ ] S3[ ] S4[ ] 右叶 S5[ ] S6[ ] S7[ ] S8[ ] 建议:对于CT显示<10 mm的病灶,除具有典型转移瘤表现时纳入转移灶,其他情况建议纳入不确定转移灶,进一步行肝脏增强MRI进行判断。 10.其他 表 4 肝转移瘤MRI结构式报告(仅适用于腹部增强MRI考虑肝转移的病例;肝转移治疗后病例不适用)
1.肝转移瘤数目: 1~3个[ ] 4~7个[ ] 8个及以上[ ] 2.肝转移瘤大小:最大病灶____mm位于肝脏____段 3.病灶分布: 尾叶 S1[ ] 左叶 S2[ ] S3[ ] S4[ ] 右叶 S5[ ] S6[ ] S7[ ] S8[ ] 4.与重要血管的关系: 门脉右支 主干 未见显示[ ] 推移移位[ ] 紧邻[ ] 分界清楚[ ] 分支 未见显示[ ] 推移移位[ ] 紧邻[ ] 分界清楚[ ] 门脉左支 主干 未见显示[ ] 推移移位[ ] 紧邻[ ] 分界清楚[ ] 分支 未见显示[ ] 推移移位[ ] 紧邻[ ] 分界清楚[ ] 肝右静脉 未见显示[ ] 推移移位[ ] 紧邻[ ] 分界清楚[ ] 肝中静脉 未见显示[ ] 推移移位[ ] 紧邻[ ] 分界清楚[ ] 肝左静脉 未见显示[ ] 推移移位[ ] 紧邻[ ] 分界清楚[ ] 下腔静脉 未见显示[ ] 推移移位[ ] 紧邻[ ] 分界清楚[ ] 5.肝门区淋巴结:有[ ] 无[ ] 最大LN大小____mm ×____mm 6.血管变异起源: 肝左动脉:肝固有动脉[ ] 胃左动脉[ ] 肝右动脉:肝固有动脉[ ] 肠系膜上动脉[ ] 肝总动脉:腹腔干[ ] 肠系膜上动脉[ ] 腹主动脉[ ] 7.不确定转移灶:无[ ] 有[ ] 8.不确定转移灶位置分布: 尾叶 S1[ ] 左叶 S2[ ] S3[ ] S4[ ] 右叶 S5[ ] S6[ ] S7[ ] S8[ ] 建议:对于CT显示<10 mm的病灶,除具有典型转移瘤表现时纳入转移灶,其他情况建议纳入不确定转移灶,进一步行肝脏增强MRI进行判断。 9.其他 表 5 肿瘤出芽分级标准[37]
分级 出芽数目(每1个20倍视野,0.785 mm2) 低度 0~4个 中度 5~9个 高度 10个或更多 表 6 肿瘤退缩分级(TRG)[37]
分级 退缩程度 程度描述 0级 完全反应 无肿瘤细胞残留 1级 几乎完全反应 单个或少量小灶肿瘤细胞残留 2级 部分反应 肿瘤残留伴明显肿瘤退缩,但多于单个或少量小灶肿瘤细胞 3级 无退缩 广泛肿瘤残留,无明显肿瘤退缩 注:TRG评分仅限于原发肿瘤病灶;肿瘤细胞是指有活性的瘤细胞,不包括退变、坏死的瘤细胞;放疗或化疗后出现的无细胞的黏液湖,不是肿瘤残留 表 7 结直肠内镜切除标本结构式报告(仅适用于完整的息肉或黏膜/肠壁切除标本)
姓名 性别 年龄 病理号 姓名 性别 年龄 病理号 病案号 送检部位 病案号 送检部位 标本大小 最大径:___cm另两径:___cm×___cm 组织学分级 □不能确定 息肉大小 最大径:___cm另两径:___cm×___cm □低级别(高、中分化) 息肉结构 □带蒂,蒂部长度___cm,直径___cm □高级别(低分化,未分化) □广基 肿瘤侵犯 □固有膜 息肉类型 □腺管状腺瘤 (浸润最深处) □黏膜肌层 □绒毛状腺瘤 □黏膜下层(<1000 μm浸润) □绒毛腺管状腺瘤 □黏膜下层(>1000 μm浸润) □传统锯齿状腺瘤 □固有肌层 □无蒂锯齿状息肉/腺瘤 深切缘(蒂部切缘) □不能评估 □错构瘤样息肉 □无浸润性癌累及,浸润性癌距切缘距离:___mm □其他: □浸润性癌累及 高级别上皮内瘤变 □无 黏膜切缘 □不能评估 □有 □无上皮内瘤变(异型增生) □有固有膜浸润(黏膜内癌) □可见腺瘤(低级别上皮内瘤变/异型增生) 浸润性癌(癌浸润黏膜下层) □无 □可见高级别上皮内瘤变(异型增生)或黏膜内癌 □有 □浸润性癌累及 浸润性癌大小 最大径:___cm另两径:___cm×___cm 肿瘤出芽 □低度(0~4个/20倍视野) 组织学分型 □腺癌,非特殊型 □中度(5~9个/20倍视野) □锯齿状腺癌 □高度(10个或以上/20倍视野) □黏瘤样腺癌 □不可评估 □微乳头状癌 脉管侵犯 □未见 □黏液腺癌 □微血管侵犯 □低黏附性癌 □淋巴管侵犯 □印戒细胞癌 □静脉侵犯 □髓样癌 □不确定 □腺鳞癌 错配修复蛋白免疫组化 MLH1( ) PMS2( ) □未分化癌,非特殊型 MSH2( ) MSH6( ) □癌伴肉瘤样成分 □不适用 表 8 结直肠切除标本结构式报告
姓名 性别 年龄 病理号 姓名 性别 年龄 病理号 病案号 送检部位 病案号 送检部位 标本大小 长度: ___cm周径: ___cm □浸润性癌累及 肿瘤位置 距近侧断端___cm,距远侧断端___cm 远侧端切缘 □不能评估 大体类型 □隆起型 □无上皮内瘤变(异型增生) □溃疡型 □可见腺瘤(低级别上皮内瘤变或异型增生) □浸润型 □可见高级别上皮内瘤变(异型增生)或黏膜内癌 肿瘤大小 最大径: ___cm另两径: ___cm×___cm □浸润性癌累及 大体肿瘤穿孔 □可见 环周(放射状) □不适用 □未见 或系膜切缘 □不能评估 □不能确定 □无浸润性癌累及 组织学分型 □腺癌,非特殊型 □浸润性癌累及(肿瘤见于距切缘0~1 mm处) □锯齿状腺癌 治疗效果(新辅助 □无前期治疗 □腺瘤样腺癌 治疗后癌适用) □有治疗效果 □微乳头状腺癌 □无残存肿瘤(0级,完全退缩) □黏液腺癌 □中等退缩(1级,少许残存肿瘤) □低黏附性癌 □轻微退缩(2级) □印戒细胞癌 □未见明确反应(3级,反应不良) □髓样癌 □不明确 □腺鳞癌 肿瘤出芽 □低度(0~4个/20倍视野) □未分化癌,非特殊型 □中度(5~9个/20倍视野) □癌伴肉瘤样成分 □高度(10个或以上/20倍视野) 组织学分级 □不能确定 □不可评估 脉管侵犯 □未见 □低级别(高/中分化) □微血管侵犯 □高级别(低分化,未分化) □淋巴管侵犯 肿瘤侵犯 □不能评估 □静脉侵犯 (浸润最深处) □无原发肿瘤证据 □不确定 □无固有膜浸润 神经侵犯 □未见 □黏膜内癌,侵犯固有膜/ 黏膜肌层 □可见 □肿瘤侵犯黏膜下层 □不确定 □肿瘤侵犯固有肌层 淋巴结 □无淋巴结送检或未找到淋巴结 □肿瘤侵透固有肌层达浆膜下脂肪组织或无腹膜被覆的结肠周或直肠周软组织 □检查的淋巴结___枚 □受累的淋巴结___枚 □肿瘤穿透脏层腹膜(浆膜) (包括大体肠管通过肿瘤穿孔和肿瘤通过炎性区域连续浸润腹膜脏层表面) 淋巴结外肿瘤结节 □未见 □可见(数量:___) □不确定 □肿瘤粘连至其他器官或结构:___ 错配修复蛋白免疫组化 MLH1( ) PMS2( ) □肿瘤直接侵犯附近结构:___ MSH2( ) MSH6( ) 近侧端切缘 □不能评估 病理分期 □m(多个原发肿瘤) □无上皮内瘤变(异型增生) □r (复发性) □可见腺瘤(低级别上皮内瘤变或异型增生) □y(新辅助治疗后) □可见高级别上皮内瘤变(异型增生)或黏膜内癌 T___N___M___ 表 9 2017年第八版的结直肠癌TNM分期系统解剖分期和预后组别[38]
期别 T N M 0 Tis N0 M0 Ⅰ T1 N0 M0 T2 N0 M0 ⅡA T3 N0 M0 ⅡB T4a N0 M0 ⅡC T4b N0 M0 ⅢA T1~2 N1/N1c M0 T1 N2a M0 ⅢB T3~4a N1/N1c M0 T2~3 N2a M0 T1~2 N2b M0 ⅢC T4a N2a M0 T3~4a N2b M0 T4b N1~2 M0 ⅣA 任何T 任何N M1a ⅣB 任何T 任何N M1b ⅣC 任何T 任何N M1c 表 10 Ⅱ~Ⅲ期直肠癌新辅助放化疗分层治疗推荐
复发危险度分层 处理方式 推荐级别 低危组,满足以下全部条件:中/高位cT3a/b;cN0/高位cN1;MRF(-);EMVI(-) 直接行TME手术;TME手术质量评估;根据手术病理决定术后辅助治疗
如外科无把握做到高质量TME手术,行术前CRT联合延迟手术/ SCRT联合即刻手术推荐 中危组,MRF(-)且满足以下任一条或多条:低位cT3a/b,未累及肛提肌;cN1~2(无结外种植);EMVI(-) 术前CRT联合延迟手术/SCRT联合即刻手术 推荐 高危组,MRF(-)且满足以下任一条或多条:cT3c/d或极低位,未累及肛提肌;cN1~2 (结外种植);EMVI (+) 术前CRT /SCRT序贯化疗后延迟手术 推荐 极高危组,满足以下任一条或多条:MRF (+);cT4;肛提肌受侵;侧方淋巴结(+) 术前CRT /SCRT序贯化疗后延迟手术/新辅助化疗序贯CRT后延迟手术/TNT模式 推荐 体弱及老年患者或不能耐受CRT的严重合并症患者 SCRT后延迟手术 推荐 手术保留肛门括约肌有困难、患者有强烈保肛意愿者 同步放化疗+序贯化疗/短程放疗+序贯化疗后,根据疗效评估决定手术/等待观察 推荐 TME:全直肠系膜切除术;MRF:直肠系膜筋膜;EMVI:肠壁外血管侵犯;CRT:长程同步放化疗;SCRT:短程放疗 表 11 Ⅱ~Ⅲ期直肠癌辅助放化疗分层治疗推荐
复发危险度分层 处理方式 推荐级别 满足以下任一条件:低位T3~4N0;CRM+;pN+;肿瘤沉积(TDs);神经浸润+TME质量差/直肠系膜缺损/无法评价TME手术质量 术后同步放化疗 推荐 满足以下全部条件:中高位T3~4aN0;CRM-;pN0;神经浸润且TME质量好/直肠系膜光滑完整 术后同步放化疗 不建议 TME:同表 10;CRM:环周切缘 表 12 直肠癌临床完全缓解评判标准
项目 标准 直肠指诊 未触及明确肿物,肠壁柔软 内镜 未见明确肿瘤残存,原肿瘤区域可仅见黏膜白斑和(或毛细血管)扩张 盆腔MRI T2WI显示瘤床区域未见明确肿瘤信号且无可疑淋巴结;DWI b值为800~1 000时,无肿瘤高信号且ADC图无低信号 -
[1] Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71: 209-249. doi: 10.3322/caac.21660 [2] 朱云峰, 陈晓飞. 粪便隐血试验与SDC2基因甲基化检测在结直肠癌筛查中的效果评价[J]. 中国肿瘤, 2022, 31: 723-727. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHLU202209005.htm [3] 乐晨琴, 刘成成, 胡烨婷, 等. 美国一般风险人群结直肠癌筛查指南更新解读[J]. 中华胃肠外科杂志, 2022, 25: 826-833. [4] 中国抗癌协会家族遗传性肿瘤专业委员会. 中国家族遗传性肿瘤临床诊疗专家共识(2021年版)(4): 家族遗传性结直肠癌[J]. 中国肿瘤临床, 2022, 49: 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZL202214007.htm [5] Diagnosis And Treatment Guidelines For Colorectal Cancer Working Group C. Chinese Society of Clinical Oncology (CSCO) diagnosis and treatment guidelines for colorectal cancer 2018 (English version)[J]. Chin J Cancer Res, 2019, 31: 117-134. doi: 10.21147/j.issn.1000-9604.2019.01.07 [6] Li J, Yuan Y, Yang F, et al. Expert consensus on multidisciplinary therapy of colorectal cancer with lung metastases (2019 edition)[J]. J Hematol Oncol, 2019, 12: 16. doi: 10.1186/s13045-019-0702-0 [7] Beets-Tan R, Lambregts D, Maas M, et al. Magnetic resonance imaging for clinical management of rectal cancer: Updated recommendations from the 2016 European Society of Gastrointestinal and Abdominal Radiology (ESGAR) consensus meeting[J]. Eur Radiol, 2018, 28: 1465-1475. doi: 10.1007/s00330-017-5026-2 [8] Rouleau Fournier F, Motamedi M, Brown CJ, et al. Oncologic outcomes associated with MRI-detected Extramural Venous Invasion (mrEMVI) in rectal cancer: a systematic review and meta-analysis[J]. Ann Surg, 2022, 275: 303-314. doi: 10.1097/SLA.0000000000004636 [9] Hoendervangers S, Burbach J, Lacle MM, et al. Patholo-gical complete response following different neoadjuvant treatment strategies for locally advanced rectal cancer: a systematic review and meta-analysis[J]. Ann Surg Oncol, 2020, 27: 4319-4336. doi: 10.1245/s10434-020-08615-2 [10] Park SH, Cho SH, Choi SH, et al. MRI assessment of complete response to preoperative chemoradiation therapy for rectal cancer: 2020 guide for practice from the Korean society of abdominal radiology[J]. Korean J Radiol, 2020, 21: 812-828. doi: 10.3348/kjr.2020.0483 [11] Muaddi H, Silva S, Choi WJ, et al. When is a ghost really gone? A systematic review and meta-analysis of the accuracy of imaging modalities to predict complete pathological response of colorectal cancer liver metastases after chemotherapy[J]. Ann Surg Oncol, 2021, 28: 6805-6813. doi: 10.1245/s10434-021-09824-z [12] Tsili AC, Alexiou G, Naka C, et al. Imaging of colorectal cancer liver metastases using contrast-enhanced US, multidetector CT, MRI, and FDG PET/CT: a meta-analysis[J]. Acta Radiol, 2021, 62: 302-312. doi: 10.1177/0284185120925481 [13] O'Connell E, Galvin R, McNamara DA, et al. The utility of preoperative radiological evaluation of early rectal neoplasia: a systematic review and meta-analysis[J]. Colorectal Dis, 2020, 22: 1076-1084. doi: 10.1111/codi.15015 [14] Liu W, Zhang ZY, Yin SS, et al. Contrast-enhanced intraoperative ultrasound improved sensitivity and positive predictive value in colorectal liver metastasis: a systematic review and meta-analysis[J]. Ann Surg Oncol, 2021, 28: 3763-3773. doi: 10.1245/s10434-020-09365-x [15] Mirshahvalad SA, Hinzpeter R, Kohan A, et al. Diagnostic performance of [18F]-FDG PET/MR in evaluating colorectal cancer: a systematic review and meta-analysis[J]. Eur J Nucl Med Mol Imaging, 2022, 49: 4205-4217. doi: 10.1007/s00259-022-05871-0 [16] Steele SR, Chang GJ, Hendren S, et al. Practice guideline for the surveillance of patients after curative treatment of colon and rectal cancer[J]. Dis Colon Rectum, 2015, 58: 713-725. doi: 10.1097/DCR.0000000000000410 [17] Blomqvist L, Holm T, Göranson H, et al. MR imaging, CT and CEA scintigraphy in the diagnosis of local recurrence of rectal carcinoma[J]. Acta Radiol, 1996, 37: 779-784. doi: 10.1177/02841851960373P270 [18] Pema PJ, Bennett WF, Bova JG, et al. CT vs MRI in diagnosis of recurrent rectosigmoid carcinoma[J]. J Comput Assist Tomogr, 1994, 18: 256-261. doi: 10.1097/00004728-199403000-00016 [19] Schaefer O, Langer M. Detection of recurrent rectal cancer with CT, MRI and PET/CT[J]. Eur Radiol, 2007, 17: 2044-2054. doi: 10.1007/s00330-007-0613-2 [20] Colosio A, Fornès P, Soyer P, et al. Local colorectal cancer recurrence: pelvic MRI evaluation[J]. Abdom Imaging, 2013, 38: 72-81. doi: 10.1007/s00261-012-9891-5 [21] Guillem JG, Minsky BD. Extended perineal resection of distal rectal cancers: surgical advance, increased utilization of neoadjuvant therapies, proper patient selection or all of the above?[J]. J Clin Oncol, 2008, 26: 3481-3482. doi: 10.1200/JCO.2007.15.6646 [22] Kusters M, Marijnen CA, van de Velde CJ, et al. Patterns of local recurrence in rectal cancer; a study of the Dutch TME trial[J]. Eur J Surg Oncol, 2010, 36: 470-476. doi: 10.1016/j.ejso.2009.11.011 [23] Van Cutsem E, Nordlinger B, Cervantes A. Advanced colorectal cancer: ESMO clinical practice guidelines for treatment[J]. Ann Oncol, 2010, 21 Suppl 5: v93-v97. [24] Kaur H, Choi H, You YN, et al. MR imaging for preoperative evaluation of primary rectal cancer: practical considerations[J]. Radiographics, 2012, 32: 389-409. doi: 10.1148/rg.322115122 [25] Patel UB, Taylor F, Blomqvist L, et al. Magnetic resonance imaging-detected tumor response for locally advanced rectal cancer predicts survival outcomes: MERCURY experience[J]. J Clin Oncol, 2011, 29: 3753-3760. doi: 10.1200/JCO.2011.34.9068 [26] Battersby NJ, How P, Moran B, et al. Prospective validation of a low rectal cancer magnetic resonance imaging staging system and development of a local recurrence risk stratification model: the MERCURY Ⅱ study[J]. Ann Surg, 2016, 263: 751-760. doi: 10.1097/SLA.0000000000001193 [27] Bamba Y, Itabashi M, Kameoka S. Preoperative evaluation of the depth of anal canal invasion in very low rectal cancer by magnetic resonance imaging and surgical indications for intersphincteric resection[J]. Surg Today, 2012, 42: 328-333. doi: 10.1007/s00595-011-0007-6 [28] Shihab OC, How P, West N, et al. Can a novel MRI staging system for low rectal cancer aid surgical planning?[J]. Dis Colon Rectum, 2011, 54: 1260-1264. doi: 10.1097/DCR.0b013e31822abd78 [29] Fernandes MC, Gollub MJ, Brown G. The importance of MRI for rectal cancer evaluation[J]. Surg Oncol, 2022, 43: 101739. doi: 10.1016/j.suronc.2022.101739 [30] Shaukat A, Kaltenbach T, Dominitz JA, et al. Endoscopic recognition and management strategies for malignant colorectal polyps: recommendations of the US Multi-Society Task Force on olorectal Cancer[J]. Gastroenterology, 2020, 159: 1916-1934. e2. doi: 10.1053/j.gastro.2020.08.050 [31] Choi JY, Jung SA, Shim KN, et al. Meta-analysis of predictive clinicopathologic factors for lymph node metastasis in patients with early colorectal carcinoma[J]. J Korean Med Sci, 2015, 30: 398- 406. [32] Tanaka S, Kashida H, Saito Y, et al. Japan gastroenterological endoscopy society guidelines for colorectal endoscopic submucosal dissection/endoscopic mucosal resection[J]. Dig Endosc, 2020, 32: 219-239. doi: 10.1111/den.13545 [33] Matsuda T, Fukuzawa M, Uraoka T, et al. Risk of lymph node metastasis in patients with pedunculated type early invasive colorectal cancer: a retrospective multicenter study[J]. Cancer Sci, 2011, 102: 1693-1697. doi: 10.1111/j.1349-7006.2011.01997.x [34] Nagtegaal ID, Odze RD, Klimstra D, et al. The 2019 WHO classification of tumours of the digestive system[J]. Histopathology, 2020, 76: 182-188. doi: 10.1111/his.13975 [35] Benson AB, Venook AP, Al-Hawary MM, et al. Rectal Cancer, Version 2.2022, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2022, 20: 1139-1167. doi: 10.6004/jnccn.2022.0051 [36] Pimentel-Nunes P, Libânio D, Bastiaansen B, et al. Endoscopic submucosal dissection for superficial gastrointestinal lesions: European Society of Gastrointestinal Endoscopy (ESGE) Guideline-Update 2022[J]. Endoscopy, 2022, 54: 591-622. doi: 10.1055/a-1811-7025 [37] Lugli A, Kirsch R, Ajioka Y, et al. Recommendations for reporting tumor budding in colorectal cancer based on the International Tumor Budding Consensus Conference (ITBCC) 2016[J]. Mod Pathol, 2017, 30: 1299-1311. doi: 10.1038/modpathol.2017.46 [38] Martelli V, Pastorino A, Sobrero AF. Prognostic and predictive molecular biomarkers in advanced colorectal cancer[J]. Pharmacol Ther, 2022, 236: 108239. doi: 10.1016/j.pharmthera.2022.108239 [39] Wang J, Yi Y, Xiao Y, et al. Prevalence of recurrent oncogenic fusion in mismatch repair-deficient colorectal carcino-ma with hypermethylated MLH1 and wild-type BRAF and KRAS[J]. Mod Pathol, 2019, 32: 1053-1064. doi: 10.1038/s41379-019-0212-1 [40] Weiser MR. AJCC 8th Edition: Colorectal Cancer[J]. Ann Surg Oncol, 2018, 25: 1454-1455. doi: 10.1245/s10434-018-6462-1 [41] Sabiston DC. Sabiston textbook of surgery[M]. 20 ed. Amsterdam: Elsevier, 2016. [42] 顾晋. 结直肠癌外科手术的切缘[J]. 中华胃肠外科杂志, 2022, 25: 36-39. [43] Heald RJ, Husband EM, Ryall RD. The mesorectum in rectal cancer surgery-the clue to pelvic recurrence?[J]. Br J Surg, 1982, 69: 613-616. [44] 关旭, 王锡山. 结直肠肿瘤经自然腔道取标本手术的器官功能保护优势[J]. 中华胃肠外科杂志, 2022, 25: 500-504. [45] Yuan Z, Weng S, Ye C, et al. CSCO guidelines for colorectal cancer version 2022: Updates and discussions[J]. Chin J Cancer Res, 2022, 34: 67-70. doi: 10.21147/j.issn.1000-9604.2022.02.01 [46] Cercek A, Lumish M, Sinopoli J, et al. PD-1 blockade in mismatch repair-deficient, locally advanced rectal cancer[J]. N Engl J Med, 2022, 386: 2363-2376. doi: 10.1056/NEJMoa2201445 [47] Hu H, Kang L, Zhang J, et al. Neoadjuvant PD-1 blockade with toripalimab, with or without celecoxib, in mismatch repair-deficient or microsatellite instability-high, locally advanced, colorectal cancer (PICC): a single-centre, parallel-group, non-comparative, randomised, phase 2 trial[J]. Lancet Gastroenterol Hepatol, 2022, 7: 38-48. doi: 10.1016/S2468-1253(21)00348-4 [48] Grothey A, Sobrero AF, Shields AF, et al. Duration of adjuvant chemotherapy for stage Ⅲ colon cancer[J]. N Engl J Med, 2018, 378: 1177-1188. doi: 10.1056/NEJMoa1713709 [49] Li J, Qin S, Xu RH, et al. Effect of fruquintinib vs placebo on overall survival in patients with previously treated metastatic colorectal cancer: the FRESCO randomized clinical trial[J]. JAMA, 2018, 319: 2486-2496. doi: 10.1001/jama.2018.7855 [50] Xu RH, Muro K, Morita S, et al. Modified XELIRI (capecitabine plus irinotecan) versus FOLFIRI (leucovorin, fluorouracil, and irinotecan), both either with or without bevacizumab, as second-line therapy for metastatic colorectal cancer (AXEPT): a multicentre, open-label, randomised, non-inferiority, phase 3 trial[J]. Lancet Oncol, 2018, 9: 670-671. [51] André T, Shiu KK, Kim TW, et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer[J]. N Engl J Med, 2020, 83: 2207-2218. [52] Li J, Deng Y, Zhang W, et al. Subcutaneous envafolimab monotherapy in patients with advanced defective mismatch repair/microsatellite instability high solid tumors[J]. J Hematol Oncol, 2021, 14: 95. doi: 10.1186/s13045-021-01095-1 [53] Hong DS, DuBois SG, Kummar S, et al. Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials[J]. Lancet Oncol, 2020, 21: 531-540. doi: 10.1016/S1470-2045(19)30856-3 [54] Chen G, Peng J, Xiao Q, et al. Postoperative circulating tumor DNA as markers of recurrence risk in stages Ⅱ to Ⅲ colorectal cancer[J]. J Hematol Oncol, 2021, 14: 80. doi: 10.1186/s13045-021-01089-z [55] Tie J, Cohen JD, Lahouel K, et al. Circulating tumor DNA analysis guiding adjuvant therapy in stage Ⅱ colon cancer[J]. N Engl J Med, 2022, 386: 2261-2272. doi: 10.1056/NEJMoa2200075 [56] Fakih MG, Kopetz S, Kuboki Y, et al. Sotorasib for previously treated colorectal cancers with KRASG12C mutation (CodeBreaK100): a prespecified analysis of a single-arm, phase 2 trial[J]. Lancet Oncol, 2022, 23: 115-124. doi: 10.1016/S1470-2045(21)00605-7 [57] Kopetz S, Grothey A, Yaeger R, et al. Encorafenib, binimetinib, and cetuximab in BRAF V600E-Mutated colorectal cancer[J]. N Engl J Med, 2019, 381: 1632-1643. doi: 10.1056/NEJMoa1908075 [58] Strickler JH, Yoshino T, Graham RP, et al. Diagnosis and treatment of ERBB2-Positive metastatic colorectal cancer: a review[J]. JAMA Oncol, 2022, 8: 760-769. doi: 10.1001/jamaoncol.2021.8196 [59] Fokas E, Allgäuer M, Polat B, et al. Rando mized phase Ⅱ trial of chemoradiotherapy plus induction or consolidation chemotherapy as total neoadjuvant therapy for locally advanced rectal cancer: CAO/ARO/AIO-12[J]. J Clin Oncol, 2019, 37: 3212-3222. doi: 10.1200/JCO.19.00308 [60] Garcia-Aguilar J, Patil S, Gollub MJ, et al. Organ preservation in patients with rectal adenocarcinoma treated with total neoadjuvant therapy[J]. J Clin Oncol, 2022, 40: 2546-2556. [61] Jin J, Tang Y, Hu C, et al. Multicenter, randomized, phase Ⅲ trial of short-term radiotherapy plus chemotherapy versus long-term chemoradiotherapy in locally advanced rectal cancer (STELLAR)[J]. J Clin Oncol, 2022, 40: 1681-1692. doi: 10.1200/JCO.21.01667 [62] Bahadoer RR, Dijkstra EA, van Etten B, et al. Short-course radiotherapy followed by chemotherapy before total mesorectal excision (TME) versus preoperative chemoradiotherapy, TME, and optional adjuvant chemotherapy in locally advanced rectal cancer (RAPIDO): a randomised, open-label, phase 3 trial[J]. Lancet Oncol, 2021, 22: 29-42. doi: 10.1016/S1470-2045(20)30555-6 [63] Conroy T, Bosset JF, Etienne PL, et al. Neoadjuvant chemotherapy with FOLFIRINOX and preoperative chemoradiotherapy for patients with locally advanced rectal cancer (UNICANCER-PRODIGE 23): a multicentre, randomised, open-label, phase 3 trial[J]. Lancet Oncol, 2021, 22: 702-715. doi: 10.1016/S1470-2045(21)00079-6 [64] Bando H, Tsukada Y, Inamori K, et al. Preoperative chemoradiotherapy plus nivolumab before surgery in patients with microsatellite stable and microsatellite instability-high locally advanced rectal cancer[J]. Clin Cancer Res, 2022, 28: 1136-1146. doi: 10.1158/1078-0432.CCR-21-3213 [65] Chalabi M, Fanchi LF, Dijkstra KK, et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers[J]. Nat Med, 2020, 26: 566-576. doi: 10.1038/s41591-020-0805-8 [66] Lin Z, Cai M, Zhang P, et al. Phase Ⅱ, single-arm trial of preoperative short-course radiotherapy followed by chemotherapy and camrelizumab in locally advanced rectal cancer[J]. J Immunother Cancer, 2021, 9: e003554. doi: 10.1136/jitc-2021-003554 [67] Rahma OE, Yothers G, Hong TS, et al. Use of total neoadjuvant therapy for locally advanced rectal cancer: initial results from the pembrolizumab arm of a phase 2 randomized clinical trial[J]. JAMA Oncol, 2021, 7: 1225-1230. doi: 10.1001/jamaoncol.2021.1683 [68] Fernandez LM, São Julião GP, Figueiredo NL, et al. Conditional recurrence-free survival of clinical complete responders managed by watch and wait after neoadjuvant chemoradiotherapy for rectal cancer in the International Watch & Wait Database: a retrospective, international, multicentre registry study[J]. Lancet Oncol, 2021, 22: 43-50. doi: 10.1016/S1470-2045(20)30557-X [69] Fokas E, Appelt A, Glynne-Jones R, et al. International consensus recommendations on key outcome measures for organ preservation after (chemo)radiotherapy in patients with rectal cancer[J]. Nat Rev Clin Oncol, 2021, 18: 805-816. doi: 10.1038/s41571-021-00538-5 [70] Peters FP, Teo M, Appelt AL, et al. Mesorectal radiother-apy for early stage rectal cancer: a novel target volume[J]. Clin Transl Radiat Oncol, 2020, 21: 104-111. doi: 10.1016/j.ctro.2020.02.001 [71] Zhu J, Liu A, Sun X, et al. Multicenter, randomized, phase Ⅲ trial of neoadjuvant chemoradiation with capecitabine and irinotecan guided by UGT1A1 status in patients with locally advanced rectal cancer[J]. J Clin Oncol, 2020, 38: 4231-4239. doi: 10.1200/JCO.20.01932 [72] Garant A, Vasilevsky CA, Boutros M, et al. MORPHEUS Phase Ⅱ-Ⅲ study: a pre-planned interim safety analysis and preliminary results[J]. Cancers (Basel), 2022, 14: 3665. doi: 10.3390/cancers14153665 [73] Das P, Delclos ME, Skibber JM, et al. Hyperfractionated accelerated radiotherapy for rectal cancer in patients with prior pelvic irradiation[J]. Int J Radiat Oncol Biol Phys, 2010, 77: 60-65. doi: 10.1016/j.ijrobp.2009.04.056 [74] Tao R, Tsai CJ, Jensen G, et al. Hyperfractionated accelerated reirradiation for rectal cancer: an analysis of outcomes and toxicity[J]. Radiother Oncol, 2017, 122: 146-151. doi: 10.1016/j.radonc.2016.12.015 -