[1]
|
Venkatesan A, Tunkel AR, Bloch KC, et al. Case definitions, diagnostic algorithms, and priorities in encephalitis:consensus statement of the international encephalitis consortium[J]. Clin Infect Dis, 2013, 57:1114-1128. |
[2]
|
Wilson MR, Sample HA, Zorn KC, et al. Clinical Metagenomic Sequencing for Diagnosis of Meningitis and Encephalitis[J]. N Engl J Med, 2019, 380:2327-2340. |
[3]
|
Glaser CA, Honarmand S, Anderson LJ, et al. Beyond viruses:clinical profiles and etiologies associated with encephalitis[J]. Clin Infect Dis, 2006, 43:1565-1577. |
[4]
|
Fan S, Ren H, Wei Y, et al. Next-generation sequencing of the cerebrospinal fluid in the diagnosis of neurobrucellosis[J]. Int J Infect Dis, 2018, 67:20-24. |
[5]
|
Xing XW, Zhang JT, Ma YB, et al. Metagenomic Next-Generation Sequencing for Diagnosis of Infectious Encephalitis and Meningitis:A Large, Prospective Case Series of 213 Patients[J]. Front Cell Infect Microbiol, 2020, 10:88. |
[6]
|
顾嘉程,吴洪,陈星兆,等. 宏基因组二代测序在诊断颅脑创伤相关中枢神经系统感染中的价值[J]. 中华神经外科杂志, 2020, 36:993-997. |
[7]
|
赵伟丽,林福虹,乔小东,等. 应用二代测序诊断中枢神经系统感染性疾病的回顾性分析[J]. 中华神经科杂志, 2020, 53:1016-1020. |
[8]
|
范思远,关鸿志,葛瑛,等. 北京脑炎协助组脑炎与脑膜炎诊断标准[C]. 第六届北京罕见病学术大会暨2018京津冀罕见病学术大会, 2019. |
[9]
|
张栋,陆旻雅,苏慧婷,等. 病原宏基因组高通量测序报告解读流程建议[J]. 临床实验室, 2023, 17:65-69. |
[10]
|
Segawa S, Sawai S, Murata S, et al. Direct application of MALDI-TOF mass spectrometry to cerebrospinal fluid for rapid pathogen identification in a patient with bacterial meningitis[J]. Clin Chim Acta, 2014, 435:59-61. |
[11]
|
Angeletti S. Matrix assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology[J]. J Microbiol Methods, 2017, 138:20-29. |
[12]
|
李霞,谭少华,韩孟,等. mNGS在中枢神经系统感染中的诊断效能评估[J]. 吉林医学, 2020, 41:1864-1865. |
[13]
|
姚仲伟,苏淑芬,李美锦,等. 宏基因组测序技术在儿童中枢神经系统感染性疾病中的临床价值分析[J]. 国际医药卫生导报, 2021, 27:1489-1491. |
[14]
|
中华医学会神经病学分会感染性疾病与脑脊液细胞学学组. 中枢神经系统感染性疾病的脑脊液宏基因组学第二代测序应用专家共识[J]. 中华神经科杂志, 2021, 54:1234- 1240. |
[15]
|
Yu G, Zhao W, Shen Y, et al. Metagenomic next generation sequencing for the diagnosis of tuberculosis meningitis:A systematic review and meta-analysis[J]. PLoS One, 2020, 15:e243161. |
[16]
|
Du J, Zhang J, Zhang D, et al. Background Filtering of Clinical Metagenomic Sequencing with a Library Concentration-Normalized Model[J]. Microbiol Spectr, 2022, 10:e177922. |
[17]
|
Zhang D, Zhang J, Du J, et al. Optimized sequencing adaptors enable rapid and real-time metagenomic identification of pathogens during runtime of Illumina sequencing[J]. Clin Chem, 2022, 68:826-836. |
[18]
|
张栋,张京家,杜娟,等. 病原宏基因组高通量测序性能确认方案[J]. 中华检验医学杂志, 2022, 45:899-905. |
[19]
|
中华传染病杂志编辑委员会. 中国宏基因组学第二代测序技术检测感染病原体的临床应用专家共识[J]. 中华传染病杂志, 2020, 38:681-689. |
[20]
|
张栋,杨启文. 病原宏基因组检测平台的建设以及质量保证[J]. 中华医学杂志, 2023, 103:1092-1097. |
[21]
|
Wang S, Chen Y, Wang D, et al. The Feasibility of Metagenomic Next-Generation Sequencing to Identify Pathogens Causing Tuberculous Meningitis in Cerebrospinal Fluid[J]. Front Microbiol, 2019, 10:1993. |
[22]
|
Xing XW, Zhang JT, Ma YB, et al. Apparent performance of metagenomic nextgeneration sequencing in the diagnosis of cryptococcal meningitis:a descriptive study[J]. J Med Microbiol, 2019, 68:1204-1210. |
[23]
|
Ji XC, Zhou LF, Li CY, et al. Reduction of Human DNA Contamination in Clinical Cerebrospinal Fluid Specimens Improves the Sensitivity of Metagenomic Next-Generation Sequencing[J]. J Mol Neurosci, 2020, 70:659-666. |
[24]
|
Hasan MR, Rawat A, Tang P, et al. Depletion of Human DNA in Spiked Clinical Specimens for Improvement of Sensitivity of Pathogen Detection by Next-Generation Sequencing[J]. J Clin Microbiol, 2016, 54:919-927. |