留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

感染在自身免疫性疾病中的作用机制

程琳琳 李詹 李永哲

程琳琳, 李詹, 李永哲. 感染在自身免疫性疾病中的作用机制[J]. 协和医学杂志. doi: 10.12290/xhyxzz.2023-0268
引用本文: 程琳琳, 李詹, 李永哲. 感染在自身免疫性疾病中的作用机制[J]. 协和医学杂志. doi: 10.12290/xhyxzz.2023-0268
CHENG Linlin, LI Zhan, LI Yongzhe. Research Progress on the Mechanism of Infection in Autoimmune Diseases[J]. Medical Journal of Peking Union Medical College Hospital. doi: 10.12290/xhyxzz.2023-0268
Citation: CHENG Linlin, LI Zhan, LI Yongzhe. Research Progress on the Mechanism of Infection in Autoimmune Diseases[J]. Medical Journal of Peking Union Medical College Hospital. doi: 10.12290/xhyxzz.2023-0268

感染在自身免疫性疾病中的作用机制

doi: 10.12290/xhyxzz.2023-0268
基金项目: 

国家重点研发计划(2018YFE0207300);中央高水平医院临床科研业务费项目(2022-PUMCH-B-124);北京市自然科学基金(M23008,7234383)

详细信息
    通讯作者:

    李永哲,E-mail:yongzhelipumch@126.com

Research Progress on the Mechanism of Infection in Autoimmune Diseases

Funds: 

National Key Research and Development Program of China (2018YFE0207300)

  • 摘要: 自身免疫性疾病(autoimmune disease, AID)发病机制复杂。近年来,越来越多的证据表明,感染在驱动具有潜在遗传背景的AID的发生和进展中起关键作用,这为临床重新审视AID的诱因及可能机制提供了更广泛和新颖的视角。本文通过总结病原微生物与自身免疫/AID相关性的最新研究进展,旨在从病原学角度探讨常见AID的病因和发病机制,希望通过整合现有证据,加深对AID发病机制的认识,为疾病预防和临床诊疗提供有价值的见解。
  • [1] Pisetsky DS. Pathogenesis of autoimmune disease[J]. Nat Rev Nephrol,2023,19:509-524.
    [2] Hussein HM, Rahal EA. The role of viral infections in the development of autoimmune diseases[J]. Crit Rev Microbiol,2019,45:394-412.
    [3] Goldberg E, Krause I. Infection and type 1 diabetes mellitus-a two edged sword?[J]. Autoimmun Rev,2009,8:682-686.
    [4] Kumagi T, Abe M, Ikeda Y, et al. Infection as a risk factor in the pathogenesis of primary biliary cirrhosis:pros and cons[J]. Dis Markers,2010,29:313-321.
    [5] Khalesi Z, Tamrchi V, Razizadeh MH, et al. Association between human herpesviruses and multiple sclerosis:A systematic review and meta-analysis[J]. Microb Pathog,2023,177:106031.
    [6] Quaglia M, Merlotti G, De Andrea M, et al. Viral Infections and Systemic Lupus Erythematosus:New Players in an Old Story[J]. Viruses,2021,13:277.
    [7] Gremese E, Tolusso B, Bruno D, et al. Infectious agents breaking the immunological tolerance:The holy grail in rheumatoid arthritis reconsidered[J]. Autoimmun Rev,2022,21:103102.
    [8] Cheng L, Zhan H, Liu Y, et al. Infectious agents and pathogenesis of Behçet's disease:An extensive review[J]. Clin Immunol,2023,251:109631.
    [9] Soldan SS, Lieberman PM. Epstein-Barr virus and multiple sclerosis[J]. Nat Rev Microbiol,2023,21:51-64.
    [10] Björk A, Mofors J, Wahren-Herlenius M. Environmental factors in the pathogenesis of primary Sjögren's syndrome[J]. J Intern Med,2020,287:475-492.
    [11] Rojas M, Restrepo-Jiménez P, Monsalve DM, et al. Molecular mimicry and autoimmunity[J]. J Autoimmun,2018,95:100-123.
    [12] Cunningham MW. Molecular Mimicry, Autoimmunity, and Infection:The Cross-Reactive Antigens of Group A Streptococci and their Sequelae[J]. Microbiol Spectr,2019,7:10.1128/microbiolspec.GPP3-0045-2018..
    [13] Lee H, Jeong S, Shin EC. Significance of bystander T cell activation in microbial infection[J]. Nat Immunol,2022,23:13-22.
    [14] Cornaby C, Gibbons L, Mayhew V, et al. B cell epitope spreading:mechanisms and contribution to autoimmune diseases[J]. Immunol Lett,2015,163:56-68.
    [15] Christen U. Pathogen infection and autoimmune disease[J]. Clin Exp Immunol,2019,195:10-14.
    [16] Nekoua MP, Alidjinou EK, Hober D. Persistent coxsackievirus B infection and pathogenesis of type 1 diabetes mellitus[J]. Nat Rev Endocrinol,2022,18:503-516.
    [17] Carré A, Vecchio F, Flodström-Tullberg M, et al. Coxsackievirus and Type 1 Diabetes:Diabetogenic Mechanisms and Implications for Prevention[J]. Endocr Rev,2023,44:737-751.
    [18] Root-Bernstein R, Chiles K, Huber J, et al. Clostridia and Enteroviruses as Synergistic Triggers of Type 1 Diabetes Mellitus[J]. Int J Mol Sci,2023,24:8336.
    [19] Prince MI, Ducker SJ, James OF. Case-control studies of risk factors for primary biliary cirrhosis in two United Kingdom populations[J]. Gut,2010,59:508-512.
    [20] Tanaka A, Leung PSC, Gershwin ME. Pathogen infections and primary biliary cholangitis[J]. Clin Exp Immunol,2019,195:25-34.
    [21] Bjornevik K, Cortese M, Healy BC, et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis[J]. Science,2022,375:296-301.
    [22] Robinson WH, Steinman L. Epstein-Barr virus and multiple sclerosis[J]. Science,2022,375:264- 265.
    [23] He R, Du Y, Wang C. Epstein-Barr virus infection:the leading cause of multiple sclerosis[J]. Signal Transduct Target Ther,2022,7:239.
    [24] Rostgaard K, Nielsen NM, Melbye M, et al. Siblings reduce multiple sclerosis risk by preventing delayed primary Epstein-Barr virus infection[J]. Brain,2023,146:1993-2002.
    [25] Afrasiabi A, Keane JT, Ong LTC, et al. Genetic and transcriptomic analyses support a switch to lytic phase in Epstein Barr virus infection as an important driver in developing Systemic Lupus Erythematosus[J]. J Autoimmun,2022,127:102781.
    [26] Harley JB, James JA. Epstein-Barr virus infection induces lupus autoimmunity[J]. Bull NYU Hosp Jt Dis,2006,64:45-50.
    [27] Reis AD, Mudinutti C, de Freitas Peigo M, et al. Active human herpesvirus infections in adults with systemic lupus erythematosus and correlation with the SLEDAI score[J]. Adv Rheumatol,2020,60:42.
    [28] Mahroum N, Elsalti A, Shoenfeld Y. Herpes simplex virus and SLE:Though uncommon yet with significant implications[J]. J Med Virol,2023,95:e28689.
    [29] Tomofuji Y, Maeda Y, Oguro-Igashira E, et al. Metagenome-wide association study revealed disease-specific landscape of the gut microbiome of systemic lupus erythematosus in Japanese[J]. Ann Rheum Dis,2021,80:1575-1583.
    [30] Aletaha D, Smolen JS. Diagnosis and Management of Rheumatoid Arthritis:A Review[J]. JAMA,2018,320:1360-1372.
    [31] Maeda Y, Kurakawa T, Umemoto E, et al. Dysbiosis Contributes to Arthritis Development via Activation of Autoreactive T Cells in the Intestine[J]. Arthritis Rheumatol,2016,68:2646-2661.
    [32] Wegner N, Wait R, Sroka A, et al. Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and α-enolase:implications for autoimmunity in rheumatoid arthritis[J]. Arthritis Rheum,2010,62:2662-2672.
    [33] Jiang L, Shang M, Yu S, et al. A high-fiber diet synergizes with Prevotella copri and exacerbates rheumatoid arthritis[J]. Cell Mol Immunol,2022,19:1414-1424.
    [34] Zheng Z, Sohn S, Ahn K J, et al. Serum reactivity against herpes simplex virus type 1 UL48 protein in Behçet's disease patients and a Behçet's disease-like mouse model[J]. Acta Derm Venereol,2015,95:952-958.
    [35] Silva NSM, Rodrigues LFC, Dores-Silva PR, et al. Structural, thermodynamic and functional studies of human 71 kDa heat shock cognate protein (HSPA8/hHsc70)[J]. Biochim Biophys Acta Proteins Proteom,2021,1869:140719.
    [36] Yang TH, Aosai F, Norose K, et al. Heat shock cognate protein 71-associated peptides function as an epitope for Toxoplasma gondii-specific CD4+CTL[J]. Microbiol Immunol,1997,41:553- 561.
    [37] Cho SB, Zheng Z, Ahn KJ, et al. Serum IgA reactivity against GroEL of Streptococcus sanguinis and human heterogeneous nuclear ribonucleoprotein A2/B1 in patients with Behçet disease[J]. Br J Dermatol,2013,168:977-983.
    [38] Deniz R, Emrence Z, Yalçınkaya Y, et al. Improved sensitivity of the skin pathergy test with polysaccharide pneumococcal vaccine antigens in the diagnosis of Behçet disease[J]. Rheumatology (Oxford),2023,62:1903-1909.
    [39] Ouchene L, Muntyanu A, Lavoué J, et al. Toward Understanding of Environmental Risk Factors in Systemic Sclerosis[Formula:see text] [J]. J Cutan Med Surg,2021,25:188-204.
    [40] Soffritti I, D'Accolti M, Maccari C, et al. Human Cytomegalovirus and Human Herpesvirus 6 Coinfection of Dermal Fibroblasts Enhances the Pro-Inflammatory Pathway Predisposing to Fibrosis:The Possible Impact on Systemic Sclerosis[J]. Microorganisms,2022,10:1600.
    [41] Arvia R, Zakrzewska K, Giovannelli L, et al. Parvovirus B19 induces cellular senescence in human dermal fibroblasts:putative role in systemic sclerosis-associated fibrosis[J]. Rheumatology (Oxford),2022,61:3864-3874.
    [42] Kim S, Park HJ, and Lee SI. The Microbiome in Systemic Sclerosis:Pathophysiology and Therapeutic Potential[J]. Int J Mol Sci,2022,23:16154.
    [43] Stec A, Maciejewska M, Paralusz-Stec K, et al. The Gut Microbial Metabolite Trimethylamine N-Oxide is Linked to Specific Complications of Systemic Sclerosis[J]. J Inflamm Res,2023,16:1895-1904.
    [44] Mofors J, Arkema EV, Björk A, et al. Infections increase the risk of developing Sjögren's syndrome[J]. J Intern Med,2019,285:670-680.
    [45] Croia C, Astorri E, Murray-Brown W, et al. Implication of Epstein-Barr virus infection in disease-specific autoreactive B cell activation in ectopic lymphoid structures of Sjögren's syndrome[J]. Arthritis Rheumatol,2014,66:2545-2557.
    [46] Iwakiri D, Zhou L, Samanta M, et al. Epstein-Barr virus (EBV)-encoded small RNA is released from EBV-infected cells and activates signaling from Toll-like receptor 3[J]. J Exp Med,2009,206:2091-2099.
    [47] de Paiva CS, Jones DB, Stern ME, et al. Altered Mucosal Microbiome Diversity and Disease Severity in Sjögren Syndrome[J]. Sci Rep,2016,6:23561.
    [48] Liu Y, Sawalha AH, Lu Q. COVID-19 and autoimmune diseases[J]. Curr Opin Rheumatol,2021,33:155-162.
    [49] Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19[J]. N Engl J Med,2020,382:e38.
    [50] Xiao M, Zhang Y, Zhang S, et al. Antiphospholipid Antibodies in Critically Ill Patients With COVID-19[J]. Arthritis Rheumatol,2020,72:1998-2004.
    [51] Wang G, Wang Q, Wang Y, et al. Presence of Anti-MDA5 Antibody and Its Value for the Clinical Assessment in Patients With COVID-19:A Retrospective Cohort Study[J]. Front Immunol,2021,12:791348.
    [52] Philippot Q, Fekkar A, Gervais A, et al. Autoantibodies Neutralizing Type I IFNs in the Bronchoalveolar Lavage of at Least 10% of Patients During Life-Threatening COVID-19 Pneumonia[J]. J Clin Immunol,2023,43:1093-1103.
    [53] Solanich X, Rigo-Bonnin R, Gumucio VD, et al. Pre-existing Autoantibodies Neutralizing High Concentrations of Type I Interferons in Almost 10% of COVID-19 Patients Admitted to Intensive Care in Barcelona[J]. J Clin Immunol,2021,41:1733-1744.
    [54] Barrett CE, Koyama AK, Alvarez P, et al. Risk for Newly Diagnosed Diabetes >30 Days After SARS-CoV-2 Infection Among Persons Aged <18 Years-United States, March 1, 2020-June 28, 2021[J]. MMWR Morb Mortal Wkly Rep,2022,71:59-65.
    [55] McKeigue PM, McGurnaghan S, Blackbourn L, et al. Relation of Incident Type 1 Diabetes to Recent COVID-19 Infection:Cohort Study Using e-Health Record Linkage in Scotland[J]. Diabetes Care,2023,46:921-928.
    [56] Daly JL, Simonetti B, Klein K, et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection[J]. Science,2020,370:861-865.
    [57] Cantuti-Castelvetri L, Ojha R, Pedro LD, et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity[J]. Science,2020,370:856-860.
    [58] Wu CT, Lidsky PV, Xiao Y, et al. SARS-CoV-2 infects human pancreatic β cells and elicits β cell impairment[J]. Cell Metab,2021,33:1565-1576.e5.
    [59] Chen J, Wu C, Wang X, et al. The Impact of COVID-19 on Blood Glucose:A Systematic Review and Meta-Analysis[J]. Front Endocrinol (Lausanne),2020,11:574541.
    [60] Bonometti R, Sacchi MC, Stobbione P, et al. The first case of systemic lupus erythematosus (SLE) triggered by COVID-19 infection[J]. Eur Rev Med Pharmacol Sci,2020,24:9695-9697.
    [61] Valencia Sanchez C, Theel E, Binnicker M, et al. Autoimmune Encephalitis After SARS-CoV- 2 Infection:Case Frequency, Findings, and Outcomes[J]. Neurology,2021,97:e2262-e2268.
    [62] Capes A, Bailly S, Hantson P, et al. COVID-19 infection associated with autoimmune hemolytic anemia[J]. Ann Hematol,2020,99:1679-1680.
    [63] Bourgonje AR, Andreu-Sánchez S, Vogl T, et al. Phage-display immunoprecipitation sequencing of the antibody epitope repertoire in inflammatory bowel disease reveals distinct antibody signatures[J]. Immunity,2023,56:1393-1409.e6.
    [64] Enose-Akahata Y, Wang L, Almsned F, et al. The repertoire of CSF antiviral antibodies in patients with neuroinflammatory diseases[J]. Sci Adv,2023,9:eabq6978.
  • 加载中
计量
  • 文章访问数:  19
  • HTML全文浏览量:  1
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-05
  • 修回日期:  2023-07-17
  • 网络出版日期:  2023-08-03

目录

    /

    返回文章
    返回

    【温馨提醒】近日,《协和医学杂志》编辑部接到作者反映,有多名不法人员冒充期刊编辑发送见刊通知,鼓动作者添加微信,从而骗取版面费的行为。特提醒您,本刊与作者联系的方式均为邮件通知或电话,稿件进度通知邮箱为:mjpumch@126.com,编辑部电话为:010-69154261,请提高警惕,谨防上当受骗!如有任何疑问,请致电编辑部核实。谢谢!