[1]
|
Pisetsky DS. Pathogenesis of autoimmune disease[J]. Nat Rev Nephrol,2023,19:509-524. |
[2]
|
Hussein HM, Rahal EA. The role of viral infections in the development of autoimmune diseases[J]. Crit Rev Microbiol,2019,45:394-412. |
[3]
|
Goldberg E, Krause I. Infection and type 1 diabetes mellitus-a two edged sword?[J]. Autoimmun Rev,2009,8:682-686. |
[4]
|
Kumagi T, Abe M, Ikeda Y, et al. Infection as a risk factor in the pathogenesis of primary biliary cirrhosis:pros and cons[J]. Dis Markers,2010,29:313-321. |
[5]
|
Khalesi Z, Tamrchi V, Razizadeh MH, et al. Association between human herpesviruses and multiple sclerosis:A systematic review and meta-analysis[J]. Microb Pathog,2023,177:106031. |
[6]
|
Quaglia M, Merlotti G, De Andrea M, et al. Viral Infections and Systemic Lupus Erythematosus:New Players in an Old Story[J]. Viruses,2021,13:277. |
[7]
|
Gremese E, Tolusso B, Bruno D, et al. Infectious agents breaking the immunological tolerance:The holy grail in rheumatoid arthritis reconsidered[J]. Autoimmun Rev,2022,21:103102. |
[8]
|
Cheng L, Zhan H, Liu Y, et al. Infectious agents and pathogenesis of Behçet's disease:An extensive review[J]. Clin Immunol,2023,251:109631. |
[9]
|
Soldan SS, Lieberman PM. Epstein-Barr virus and multiple sclerosis[J]. Nat Rev Microbiol,2023,21:51-64. |
[10]
|
Björk A, Mofors J, Wahren-Herlenius M. Environmental factors in the pathogenesis of primary Sjögren's syndrome[J]. J Intern Med,2020,287:475-492. |
[11]
|
Rojas M, Restrepo-Jiménez P, Monsalve DM, et al. Molecular mimicry and autoimmunity[J]. J Autoimmun,2018,95:100-123. |
[12]
|
Cunningham MW. Molecular Mimicry, Autoimmunity, and Infection:The Cross-Reactive Antigens of Group A Streptococci and their Sequelae[J]. Microbiol Spectr,2019,7:10.1128/microbiolspec.GPP3-0045-2018.. |
[13]
|
Lee H, Jeong S, Shin EC. Significance of bystander T cell activation in microbial infection[J]. Nat Immunol,2022,23:13-22. |
[14]
|
Cornaby C, Gibbons L, Mayhew V, et al. B cell epitope spreading:mechanisms and contribution to autoimmune diseases[J]. Immunol Lett,2015,163:56-68. |
[15]
|
Christen U. Pathogen infection and autoimmune disease[J]. Clin Exp Immunol,2019,195:10-14. |
[16]
|
Nekoua MP, Alidjinou EK, Hober D. Persistent coxsackievirus B infection and pathogenesis of type 1 diabetes mellitus[J]. Nat Rev Endocrinol,2022,18:503-516. |
[17]
|
Carré A, Vecchio F, Flodström-Tullberg M, et al. Coxsackievirus and Type 1 Diabetes:Diabetogenic Mechanisms and Implications for Prevention[J]. Endocr Rev,2023,44:737-751. |
[18]
|
Root-Bernstein R, Chiles K, Huber J, et al. Clostridia and Enteroviruses as Synergistic Triggers of Type 1 Diabetes Mellitus[J]. Int J Mol Sci,2023,24:8336. |
[19]
|
Prince MI, Ducker SJ, James OF. Case-control studies of risk factors for primary biliary cirrhosis in two United Kingdom populations[J]. Gut,2010,59:508-512. |
[20]
|
Tanaka A, Leung PSC, Gershwin ME. Pathogen infections and primary biliary cholangitis[J]. Clin Exp Immunol,2019,195:25-34. |
[21]
|
Bjornevik K, Cortese M, Healy BC, et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis[J]. Science,2022,375:296-301. |
[22]
|
Robinson WH, Steinman L. Epstein-Barr virus and multiple sclerosis[J]. Science,2022,375:264- 265. |
[23]
|
He R, Du Y, Wang C. Epstein-Barr virus infection:the leading cause of multiple sclerosis[J]. Signal Transduct Target Ther,2022,7:239. |
[24]
|
Rostgaard K, Nielsen NM, Melbye M, et al. Siblings reduce multiple sclerosis risk by preventing delayed primary Epstein-Barr virus infection[J]. Brain,2023,146:1993-2002. |
[25]
|
Afrasiabi A, Keane JT, Ong LTC, et al. Genetic and transcriptomic analyses support a switch to lytic phase in Epstein Barr virus infection as an important driver in developing Systemic Lupus Erythematosus[J]. J Autoimmun,2022,127:102781. |
[26]
|
Harley JB, James JA. Epstein-Barr virus infection induces lupus autoimmunity[J]. Bull NYU Hosp Jt Dis,2006,64:45-50. |
[27]
|
Reis AD, Mudinutti C, de Freitas Peigo M, et al. Active human herpesvirus infections in adults with systemic lupus erythematosus and correlation with the SLEDAI score[J]. Adv Rheumatol,2020,60:42. |
[28]
|
Mahroum N, Elsalti A, Shoenfeld Y. Herpes simplex virus and SLE:Though uncommon yet with significant implications[J]. J Med Virol,2023,95:e28689. |
[29]
|
Tomofuji Y, Maeda Y, Oguro-Igashira E, et al. Metagenome-wide association study revealed disease-specific landscape of the gut microbiome of systemic lupus erythematosus in Japanese[J]. Ann Rheum Dis,2021,80:1575-1583. |
[30]
|
Aletaha D, Smolen JS. Diagnosis and Management of Rheumatoid Arthritis:A Review[J]. JAMA,2018,320:1360-1372. |
[31]
|
Maeda Y, Kurakawa T, Umemoto E, et al. Dysbiosis Contributes to Arthritis Development via Activation of Autoreactive T Cells in the Intestine[J]. Arthritis Rheumatol,2016,68:2646-2661. |
[32]
|
Wegner N, Wait R, Sroka A, et al. Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and α-enolase:implications for autoimmunity in rheumatoid arthritis[J]. Arthritis Rheum,2010,62:2662-2672. |
[33]
|
Jiang L, Shang M, Yu S, et al. A high-fiber diet synergizes with Prevotella copri and exacerbates rheumatoid arthritis[J]. Cell Mol Immunol,2022,19:1414-1424. |
[34]
|
Zheng Z, Sohn S, Ahn K J, et al. Serum reactivity against herpes simplex virus type 1 UL48 protein in Behçet's disease patients and a Behçet's disease-like mouse model[J]. Acta Derm Venereol,2015,95:952-958. |
[35]
|
Silva NSM, Rodrigues LFC, Dores-Silva PR, et al. Structural, thermodynamic and functional studies of human 71 kDa heat shock cognate protein (HSPA8/hHsc70)[J]. Biochim Biophys Acta Proteins Proteom,2021,1869:140719. |
[36]
|
Yang TH, Aosai F, Norose K, et al. Heat shock cognate protein 71-associated peptides function as an epitope for Toxoplasma gondii-specific CD4+CTL[J]. Microbiol Immunol,1997,41:553- 561. |
[37]
|
Cho SB, Zheng Z, Ahn KJ, et al. Serum IgA reactivity against GroEL of Streptococcus sanguinis and human heterogeneous nuclear ribonucleoprotein A2/B1 in patients with Behçet disease[J]. Br J Dermatol,2013,168:977-983. |
[38]
|
Deniz R, Emrence Z, Yalçınkaya Y, et al. Improved sensitivity of the skin pathergy test with polysaccharide pneumococcal vaccine antigens in the diagnosis of Behçet disease[J]. Rheumatology (Oxford),2023,62:1903-1909. |
[39]
|
Ouchene L, Muntyanu A, Lavoué J, et al. Toward Understanding of Environmental Risk Factors in Systemic Sclerosis[Formula:see text] [J]. J Cutan Med Surg,2021,25:188-204. |
[40]
|
Soffritti I, D'Accolti M, Maccari C, et al. Human Cytomegalovirus and Human Herpesvirus 6 Coinfection of Dermal Fibroblasts Enhances the Pro-Inflammatory Pathway Predisposing to Fibrosis:The Possible Impact on Systemic Sclerosis[J]. Microorganisms,2022,10:1600. |
[41]
|
Arvia R, Zakrzewska K, Giovannelli L, et al. Parvovirus B19 induces cellular senescence in human dermal fibroblasts:putative role in systemic sclerosis-associated fibrosis[J]. Rheumatology (Oxford),2022,61:3864-3874. |
[42]
|
Kim S, Park HJ, and Lee SI. The Microbiome in Systemic Sclerosis:Pathophysiology and Therapeutic Potential[J]. Int J Mol Sci,2022,23:16154. |
[43]
|
Stec A, Maciejewska M, Paralusz-Stec K, et al. The Gut Microbial Metabolite Trimethylamine N-Oxide is Linked to Specific Complications of Systemic Sclerosis[J]. J Inflamm Res,2023,16:1895-1904. |
[44]
|
Mofors J, Arkema EV, Björk A, et al. Infections increase the risk of developing Sjögren's syndrome[J]. J Intern Med,2019,285:670-680. |
[45]
|
Croia C, Astorri E, Murray-Brown W, et al. Implication of Epstein-Barr virus infection in disease-specific autoreactive B cell activation in ectopic lymphoid structures of Sjögren's syndrome[J]. Arthritis Rheumatol,2014,66:2545-2557. |
[46]
|
Iwakiri D, Zhou L, Samanta M, et al. Epstein-Barr virus (EBV)-encoded small RNA is released from EBV-infected cells and activates signaling from Toll-like receptor 3[J]. J Exp Med,2009,206:2091-2099. |
[47]
|
de Paiva CS, Jones DB, Stern ME, et al. Altered Mucosal Microbiome Diversity and Disease Severity in Sjögren Syndrome[J]. Sci Rep,2016,6:23561. |
[48]
|
Liu Y, Sawalha AH, Lu Q. COVID-19 and autoimmune diseases[J]. Curr Opin Rheumatol,2021,33:155-162. |
[49]
|
Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19[J]. N Engl J Med,2020,382:e38. |
[50]
|
Xiao M, Zhang Y, Zhang S, et al. Antiphospholipid Antibodies in Critically Ill Patients With COVID-19[J]. Arthritis Rheumatol,2020,72:1998-2004. |
[51]
|
Wang G, Wang Q, Wang Y, et al. Presence of Anti-MDA5 Antibody and Its Value for the Clinical Assessment in Patients With COVID-19:A Retrospective Cohort Study[J]. Front Immunol,2021,12:791348. |
[52]
|
Philippot Q, Fekkar A, Gervais A, et al. Autoantibodies Neutralizing Type I IFNs in the Bronchoalveolar Lavage of at Least 10% of Patients During Life-Threatening COVID-19 Pneumonia[J]. J Clin Immunol,2023,43:1093-1103. |
[53]
|
Solanich X, Rigo-Bonnin R, Gumucio VD, et al. Pre-existing Autoantibodies Neutralizing High Concentrations of Type I Interferons in Almost 10% of COVID-19 Patients Admitted to Intensive Care in Barcelona[J]. J Clin Immunol,2021,41:1733-1744. |
[54]
|
Barrett CE, Koyama AK, Alvarez P, et al. Risk for Newly Diagnosed Diabetes >30 Days After SARS-CoV-2 Infection Among Persons Aged <18 Years-United States, March 1, 2020-June 28, 2021[J]. MMWR Morb Mortal Wkly Rep,2022,71:59-65. |
[55]
|
McKeigue PM, McGurnaghan S, Blackbourn L, et al. Relation of Incident Type 1 Diabetes to Recent COVID-19 Infection:Cohort Study Using e-Health Record Linkage in Scotland[J]. Diabetes Care,2023,46:921-928. |
[56]
|
Daly JL, Simonetti B, Klein K, et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection[J]. Science,2020,370:861-865. |
[57]
|
Cantuti-Castelvetri L, Ojha R, Pedro LD, et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity[J]. Science,2020,370:856-860. |
[58]
|
Wu CT, Lidsky PV, Xiao Y, et al. SARS-CoV-2 infects human pancreatic β cells and elicits β cell impairment[J]. Cell Metab,2021,33:1565-1576.e5. |
[59]
|
Chen J, Wu C, Wang X, et al. The Impact of COVID-19 on Blood Glucose:A Systematic Review and Meta-Analysis[J]. Front Endocrinol (Lausanne),2020,11:574541. |
[60]
|
Bonometti R, Sacchi MC, Stobbione P, et al. The first case of systemic lupus erythematosus (SLE) triggered by COVID-19 infection[J]. Eur Rev Med Pharmacol Sci,2020,24:9695-9697. |
[61]
|
Valencia Sanchez C, Theel E, Binnicker M, et al. Autoimmune Encephalitis After SARS-CoV- 2 Infection:Case Frequency, Findings, and Outcomes[J]. Neurology,2021,97:e2262-e2268. |
[62]
|
Capes A, Bailly S, Hantson P, et al. COVID-19 infection associated with autoimmune hemolytic anemia[J]. Ann Hematol,2020,99:1679-1680. |
[63]
|
Bourgonje AR, Andreu-Sánchez S, Vogl T, et al. Phage-display immunoprecipitation sequencing of the antibody epitope repertoire in inflammatory bowel disease reveals distinct antibody signatures[J]. Immunity,2023,56:1393-1409.e6. |
[64]
|
Enose-Akahata Y, Wang L, Almsned F, et al. The repertoire of CSF antiviral antibodies in patients with neuroinflammatory diseases[J]. Sci Adv,2023,9:eabq6978. |