Mechanism of Bacterial Extracellular Vesicles in Disease Development and Prospects for Application
-
摘要: 细菌外囊泡(bacterial extracellular vesicles,BEVs)是细菌衍生的细胞外囊泡。作为细菌间或细菌-宿主间相互作用的关键新媒介,BEVs是一把“双刃剑”:一方面在宿主多种病理过程,包括肠道炎性疾病、中枢神经系统相关疾病、肝脏疾病、代谢性疾病、自身免疫性疾病及肿瘤中发挥“致病”作用;另一方面作为潜在生物标志物、疫苗、抗肿瘤制剂等发挥“治病”作用,为疾病的诊治打开了新思路。但关于BEVs的研究目前尚处于起步阶段,在囊泡分离技术、疾病诊断特异性、囊泡储运优化等方面仍面临挑战,未来需设计严谨的临床研究以证实其诊断和治疗价值。Abstract: Bacterial extracellular vesicles (BEVs), bacteria-derived extracellular vesicles, are key intermediates of bacteria-bacteria and bacteria-host interactions. They are a "double-edged sword". On one hand, they play a negative role in the onset and progression of various diseases, including intestinal inflammatory disease, neurological disease, liver disease, metabolic disease, autoimmune disease and cancer. On the other hand, they play a positive role as potential biomarkers, vaccines, antitumor agents. The application of BEVs may provide novel strategies for the diagnosis and treatment of diseases. However, research on BEVs is still in its infancy, and challenges remain in vesicle isolation techniques, disease diagnostic specificity, optimization of vesicle storage and transport. Thus rigorously designed clinical studies are required to verify their diagnostic and therapeutic value.
-
Key words:
- bacterial extracellular vesicles /
- diseases /
- biomarkers /
- vaccines /
- probiotics /
- antitumor agents
作者贡献:罗晓霞、覃思华负责文献检索及论文撰写;王晖迪负责论文构思及修订;周宏伟、何彦负责选题设计及论文审校。利益冲突:所有作者均声明不存在利益冲突 -
表 1 BEVs作为潜在生物标志物的最新研究
第一作者
(发表时间)BEVs
来源疾病 研究对象
(实验组/对照组)研究方法 生物标志物 诊断模型 标志物
类型Dey[43] (2019年) 血清 葡萄球菌菌血症 21例幸存者/23例因菌血症死亡者 对感染金黄色葡萄球菌菌血症幸存者和死亡者血清中的BEVs进行分离 BEVs含量 301相对荧光单位:特异度90%/灵敏度78% 预警标志物 Wei[44] (2019年) 粪便 AD 9例AD患者/9名健康者 对来自AD患者和健康者的BEVs进行差异代谢物分析 4-半醛/PGE2/20-羟基-二十碳四烯酸/菌素/L -岩藻吡喃糖/吲哚-3-乙酸/4-甲基伞形酮/胆碱/咪唑-4-醋酸/ L-天冬氨酸/富马酸/十三酸 4-半醛/PGE2/20-羟基-二十碳四烯酸/菌素/L-岩藻吡喃糖/吲哚-3-乙酸/4-甲基伞形酮/胆碱:各自AUC>0.900咪唑-4-醋酸/ L-天冬氨酸/富马酸/十三酸:各自AUC>0.800 预测和诊断标志物 Yang[45](2020年) 血清 脑肿瘤 152例脑肿瘤患者/198名健康者 对BEVs进行16S rRNA基因测序 微生物组成 - 诊断标志物 Kim[46](2020年) 血清 卵巢癌 166例卵巢癌患者/76例良性肿瘤患者 对BEVs进行宏基因测序,构建卵巢癌与良性卵巢肿瘤的诊断模型 BEVs宏基因组图谱 年龄+ CA-125 +不动杆菌相对丰度:AUC=0.846 鉴别标志物 Kim[47](2020年) 粪便 结直肠癌 32例结直肠癌患者/40名健康者 联合BEVs的宏基因组学数据和代谢组学数据构建诊断结直肠癌的模型 两种细菌(Collinsella、Solanum melongena)/两种代谢物(leucine、oxalic acid) 宏基因组学+代谢组学:AUC=1 诊断标志物 Yang[48](2020年) 血清 特发性皮炎 24例特发性皮炎患者/49名健康者 16S rDNA宏基因组分析 BEVs细菌类群 血清BEVs生物标志物(LDA评分>3):AUC=1 诊断标志物 Yang[49](2020年) 血清 哮喘、COPD、肺癌 239例哮喘患者、205例COPD患者、324例肺癌患者/88名健康者 16S rDNA宏基因组分析,基于ELISA的抗BEVs抗体滴度分析作为肺部疾病的诊断工具 BEVs细菌类群 哮喘:AUC=0.78; COPD:AUC=0.79; 肺癌:AUC=0.80 BEVs抗体滴度的肺部疾病诊断工具 Han[50](2021年) 唾液 牙周炎 7例牙龈炎患者、8例牙周炎患者/7名健康者 对健康者、牙龈炎和牙周炎患者唾液小细胞BEVs的DNA表观遗传模式、LPS阳性OMVs群体和特异性牙周病原体来源的OMVs进行分析 具核梭杆菌OMVs 具核梭杆菌OMVs:AUC=0.94 鉴别牙龈炎和牙周炎的标志物 Yoon[51](2023年) 尿液 结直肠癌 91例结直肠癌患者/116名健康者 对BEVs进行16S rRNA基因测序,分析两组间的差异微生物群 微生物组成 - 诊断标志物 BEVs: 细菌外囊泡;AUC:受试者工作特征曲线下面积;AD: 阿尔茨海默病;CA-125:糖类抗原-125;LDA: 线性判别分析;COPD: 慢性阻塞性肺疾病;LPS: 脂多糖;OMVs: 外膜囊泡;-:未描述 表 2 益生菌细胞外囊泡在疾病治疗中可能发挥的作用
第一作者(发表时间) 微生物名称 疾病 研究内容 作用 Ñahui Palomino[56](2019年) 卷曲乳杆菌BC3(Lactobacillus crispatus) HIV感染 介导病毒-细胞相互作用的包膜蛋白暴露减少,减少HIV-1对宿主细胞的附着 抑制病原菌黏附 加氏乳杆菌BC12(Lactobacillus gasseri) Kim[57](2018年) 植物乳杆菌APsulloc 331261(Lactobacillus plantarum) 特发性皮炎 诱导抗炎细胞因子IL-10的分泌及免疫调节细胞因子IL-1β和GM-CSF的分泌; 诱导单核细胞向巨噬细胞转变及巨噬细胞向M2b状态极化 抗炎作用/免疫调节 Tong[58](2021年) 鼠李糖乳杆菌GG(Lacticaseibacillus rhamnosus) 结肠炎 抑制结肠组织TLR4-NF-κB-NLRP3轴的激活; 降低TNF-α、IL-1β、IL-2和IL-6水平 抗炎作用/免疫调节 Hu[59](2021年) 罗伊氏乳杆菌BBC3(Lactobacillus reuteri) 结肠炎 降低TNF-α、IL-1β和IL-6的基因表达,增强IL-10和TGF-β的基因表达; 激活巨噬细胞,抑制Th1和Th17介导的炎症反应 抗炎作用/免疫调节 Lee[60](2022年) 乳链球菌(Lactococcus lactis) 过敏性哮喘 气道高反应性、嗜酸性粒细胞数量、细胞因子分泌和黏液产生显著降低; 刺激DC产生IL-12,诱导Th2转变Th1,降低Ig4 免疫调节 Croatti[61](2022年) 乳杆菌(lactobacilli) 阴道感染 支持有益物种的定植及防止大肠杆菌、金黄色葡萄球菌、无乳链球菌和粪肠球菌等条件致病菌的黏附 抑制病原菌 Choi[62](2022年) 嗜黏蛋白阿克曼氏菌ATCC BA 835(Akkermansia muciniphil) 抑郁 恢复海马中MeCP2、Sirt1及神经营养因子的表达 抗抑郁作用 枯草芽孢杆菌(Bacillus subtilis) Ye[63](2023年) 植物乳杆菌(Lactobacillus plantarum) 肝损伤 降低肝细胞氧化损伤、改善脂质代谢、调节肠道菌群 - HIV:人类免疫缺陷病毒;IL: 白细胞介素;GM-CSF:粒细胞巨噬细胞刺激因子;TLR4:Toll样受体4;TNF-α:肿瘤坏死因子α;TGF-β: 转化生长因子β;Th:辅助性T细胞;DC:树突状细胞;MeCP2:甲基CpG结合蛋白2;Sirt1:NAD依赖的脱乙酰化酶;-:不作分类 -
[1] Toyofuku M, Nomura N, Eberl L. Types and origins of bacterial membrane vesicles[J]. Nat Rev Microbiol, 2019, 17: 13-24. doi: 10.1038/s41579-018-0112-2 [2] Díaz-Garrido N, Badia J, Baldomà L. Microbiota-derived extracellular vesicles in interkingdom communication in the gut[J]. J Extracell Vesicles, 2021, 10: e12161. doi: 10.1002/jev2.12161 [3] Toyofuku M, Schild S, Kaparakis-Liaskos M, et al. Composition and functions of bacterial membrane vesicles[J]. Nat Rev Microbiol, 2023, 21: 415-430. doi: 10.1038/s41579-023-00875-5 [4] Hendrix A, De Wever O. Systemically circulating bacterial extracellular vesicles: origin, fate, and function[J]. Trends Microbiol, 2022, 30: 213-216. doi: 10.1016/j.tim.2021.12.012 [5] Toyofuku M, Cárcamo-Oyarce G, Yamamoto T, et al. Prophage-triggered membrane vesicle formation through peptidoglycan damage in Bacillus subtilis[J]. Nat Commun, 2017, 8: 481. doi: 10.1038/s41467-017-00492-w [6] Xie J, Li Q, Haesebrouck F, et al. The tremendous biomedical potential of bacterial extracellular vesicles[J]. Trends Biotechnol, 2022, 40: 1173-1194. doi: 10.1016/j.tibtech.2022.03.005 [7] Devos S, Van Putte W, Vitse J, et al. Membrane vesicle secretion and prophage induction in multidrug-resistant Stenotrophomonas maltophilia in response to ciprofloxacin stress[J]. Environ Microbiol, 2017, 19: 3930-3937. doi: 10.1111/1462-2920.13793 [8] Brown L, Wolf JM, Prados-Rosales R, et al. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi[J]. Nat Rev Microbiol, 2015, 13: 620-630. doi: 10.1038/nrmicro3480 [9] Lee EY, Choi DS, Kim KP, et al. Proteomics in gram-negative bacterial outer membrane vesicles[J]. Mass Spectrom Rev, 2008, 27: 535-555. doi: 10.1002/mas.20175 [10] Zakharzhevskaya NB, Vanyushkina AA, Altukhov IA, et al. Outer membrane vesicles secreted by pathogenic and nonpathogenic Bacteroides fragilis represent different metabolic activities[J]. Sci Rep, 2017, 7: 5008. doi: 10.1038/s41598-017-05264-6 [11] Kaplan GG. The global burden of IBD: from 2015 to 2025[J]. Nat Rev Gastroenterol Hepatol, 2015, 12: 720-727. doi: 10.1038/nrgastro.2015.150 [12] Jones E, Stentz R, Telatin A, et al. The Origin of Plasma-Derived Bacterial Extracellular Vesicles in Healthy Individuals and Patients with Inflammatory Bowel Disease: A Pilot Study[J]. Genes (Basel), 2021, 12: 1636. doi: 10.3390/genes12101636 [13] Liu L, Liang L, Yang C, et al. Extracellular vesicles of Fusobacterium nucleatum compromise intestinal barrier through targeting RIPK1-mediated cell death pathway[J]. Gut Microbes, 2021, 13: 1-20. [14] Engevik MA, Danhof HA, Ruan W, et al. Fusobacterium nucleatum Secretes Outer Membrane Vesicles and Promotes Intestinal Inflammation[J]. mBio, 2021, 12: e02706-20. [15] Kaparakis M, Turnbull L, Carneiro L, et al. Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells[J]. Cell Microbiol, 2010, 12: 372-385. doi: 10.1111/j.1462-5822.2009.01404.x [16] Patten DA, Hussein E, Davies SP, et al. Commensal-derived OMVs elicit a mild proinflammatory response in intestinal epithelial cells[J]. Microbiology (Reading), 2017, 163: 702-711. doi: 10.1099/mic.0.000468 [17] Pritchard AB, Fabian Z, Lawrence CL, et al. An Investigation into the Effects of Outer Membrane Vesicles and Lipopolysaccharide of Porphyromonas gingivalis on Blood-Brain Barrier Integrity, Permeability, and Disruption of Scaffolding Proteins in a Human in vitro Model[J]. J Alzheimers Dis, 2022, 86: 343-364. doi: 10.3233/JAD-215054 [18] Muraca M, Putignani L, Fierabracci A, et al. Gut microbiota-derived outer membrane vesicles: under-recognized major players in health and disease?[J]. Discov Med, 2015, 19: 343-348. [19] Choi HI, Choi JP, Seo J, et al. Helicobacter pylori-derived extracellular vesicles increased in the gastric juices of gastric adenocarcinoma patients and induced inflammation mainly via specific targeting of gastric epithelial cells[J]. Exp Mol Med, 2017, 49: e330. doi: 10.1038/emm.2017.47 [20] Lee KE, Kim JK, Han SK, et al. The extracellular vesicle of gut microbial Paenalcaligenes hominis is a risk factor for vagus nerve-mediated cognitive impairment[J]. Microbiome, 2020, 8: 107. doi: 10.1186/s40168-020-00881-2 [21] Ma X, Shin YJ, Yoo JW, et al. Extracellular vesicles derived from Porphyromonas gingivalis induce vagus nerve-mediated cognitive impairment[J]. J Adv Res, 2023. doi: 10.1016/j.jare.2023.02.006. [22] Park AM, Tsunoda I. Helicobacter pylori infection in the stomach induces neuroinflammation: the potential roles of bacterial outer membrane vesicles in an animal model of Alzheimer's disease[J]. Inflamm Regen, 2022, 42: 39. doi: 10.1186/s41232-022-00224-8 [23] Yoshida K, Yoshida K, Seyama M, et al. Porphyromonas gingivalis outer membrane vesicles in cerebral ventricles activate microglia in mice[J]. Oral Dis, 2022. doi: 10.1111/odi.14413. [24] Wei S, Peng W, Mai Y, et al. Outer membrane vesicles enhance tau phosphorylation and contribute to cognitive impairment[J]. J Cell Physiol, 2019, 235: 4843-4855. [25] Gong T, Chen Q, Mao H, et al. Outer membrane vesicles of Porphyromonas gingivalis trigger NLRP3 inflammasome and induce neuroinflammation, tau phosphorylation, and memory dysfunction in mice[J]. Front Cell Infect Microbiol, 2022, 12: 925435. doi: 10.3389/fcimb.2022.925435 [26] Younossi ZM, Golabi P, de Avila L, et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis[J]. J Hepatol, 2019, 71: 793-801. doi: 10.1016/j.jhep.2019.06.021 [27] Villard A, Boursier J, Andriantsitohaina R. Bacterial and eukaryotic extracellular vesicles and nonalcoholic fatty liver disease: new players in the gut-liver axis? [J]. Am J Physiol Gastrointest Liver Physiol, 2021, 320: G485-G495. doi: 10.1152/ajpgi.00362.2020 [28] Fizanne L, Villard A, Benabbou N, et al. Faeces-derived extracellular vesicles participate in the onset of barrier dysfunction leading to liver diseases[J]. J Extracell Vesicles, 2023, 12: e12303. doi: 10.1002/jev2.12303 [29] Natsui K, Tsuchiya A, Imamiya R, et al. Escherichia coli-derived outer-membrane vesicles induce immune activation and progression of cirrhosis in mice and humans[J]. Liver Int, 2023, 43: 1126-1140. doi: 10.1111/liv.15539 [30] Choi Y, Kwon Y, Kim DK, et al. Gut microbe-derived extracellular vesicles induce insulin resistance, thereby impairing glucose metabolism in skeletal muscle[J]. Sci Rep, 2015, 5: 15878. doi: 10.1038/srep15878 [31] Chelakkot C, Choi Y, Kim D, et al. Akkermansia muciniphila-derived extracellular vesicles influence gut permea-bility through the regulation of tight junctions[J]. Exp Mol Mede, 2018, 50: e450. doi: 10.1038/emm.2017.282 [32] Luo Z, Ji Y, Gao H, et al. CRIg+ Macrophages Prevent Gut Microbial DNA-Containing Extracellular Vesicle-Induced Tissue Inflammation and Insulin Resistance[J]. Gastroenterology, 2021, 160: 863-874. doi: 10.1053/j.gastro.2020.10.042 [33] Mcinnes IB, Schett G. The pathogenesis of rheumatoid arthritis[J]. N Engl J Med, 2011, 365: 2205-2219. doi: 10.1056/NEJMra1004965 [34] Hong M, Li Z, Liu H, et al. Fusobacterium nucleatum aggravates rheumatoid arthritis through FadA-containing outer membrane vesicles[J]. Cell Host Microbe, 2023, 31: 798-810. e7. doi: 10.1016/j.chom.2023.03.018 [35] Quirke AM, Lugli EB, Wegner N, et al. Heightened immune response to autocitrullinated Porphyromonas gin-givalis peptidylarginine deiminase: a potential mechanism for breaching immunologic tolerance in rheumatoid arthritis[J]. Ann Rheum Dis, 2014, 73: 263-269. [36] Gabarrini G, Palma Medina LM, Stobernack T, et al. There's no place like OM: Vesicular sorting and secretion of the peptidylarginine deiminase of Porphyromonas gingivalis[J]. Virulence, 2018, 9: 456-464. [37] Sepich-Poore GD, Zitvogel L, Straussman R, et al. The microbiome and human cancer[J]. Science, 2021, 371: eabc4552. doi: 10.1126/science.abc4552 [38] Chronopoulos A, Kalluri R. Emerging role of bacterial extracellular vesicles in cancer[J]. Oncogene, 2020, 39: 6951-6960. doi: 10.1038/s41388-020-01509-3 [39] Chen G, Gao C, Jiang S, et al. Fusobacterium nucleatum outer membrane vesicles activate autophagy to promote oral cancer metastasis[J]. J Adv Res, 2023. doi: 10.1016/j.jare.2023.04.002. [40] Schaack B, Hindré T, Quansah N, et al. Microbiota-Derived Extracellular Vesicles Detected in Human Blood from Healthy Donors[J]. Int J Mol Sci, 2022, 23: 13787. doi: 10.3390/ijms232213787 [41] Yoo JY, Rho M, You YA, et al. 16S rRNA gene-based metagenomic analysis reveals differences in bacteria-derived extracellular vesicles in the urine of pregnant and non-pregnant women[J]. Exp Mol Med, 2016, 48: e208. doi: 10.1038/emm.2015.110 [42] Vandendriessche C, Kapogiannis D, Vandenbroucke RE. Biomarker and therapeutic potential of peripheral extracel-lular vesicles in Alzheimer's disease[J]. Adv Drug Deliv Rev, 2022, 190: 114486. doi: 10.1016/j.addr.2022.114486 [43] Dey S, Gudipati S, Giuliano C, et al. Reduced Production of Bacterial Membrane Vesicles Predicts Mortality in ST45/USA600 Methicillin-Resistant Staphylococcus aureus Bacteremia[J]. Antibiotics (Basel), 2019, 9: 2. doi: 10.3390/antibiotics9010002 [44] Wei SC, Wei W, Peng WJ, et al. Metabolic Alterations in the Outer Membrane Vesicles of Patients with Alzheimer's Disease: An LC-MS/MS-based Metabolomics Analysis[J]. Curr Alzheimer Res, 2019, 16: 1183-1195. [45] Yang J, Moon HE, Park HW, et al. Brain tumor diagnostic model and dietary effect based on extracellular vesicle microbiome data in serum[J]. Exp Mol Med, 2020, 52: 1602-1613. doi: 10.1038/s12276-020-00501-x [46] Kim SI, Kang N, Leem S, et al. Metagenomic Analysis of Serum Microbe-Derived Extracellular Vesicles and Diagnostic Models to Differentiate Ovarian Cancer and Benign Ovarian Tumor[J]. Cancers (Basel), 2020, 12: 1309. doi: 10.3390/cancers12051309 [47] Kim DJ, Yang J, Seo H, et al. Colorectal cancer diagnostic model utilizing metagenomic and metabolomic data of stool microbial extracellular vesicles[J]. Sci Rep, 2020, 10: 2860. doi: 10.1038/s41598-020-59529-8 [48] Yang J, McdowelL A, Seo H, et al. Diagnostic Models for Atopic Dermatitis Based on Serum Microbial Extracellular Vesicle Metagenomic Analysis: A Pilot Study[J]. Allergy Asthma Immunol Res, 2020, 12: 792-805. doi: 10.4168/aair.2020.12.5.792 [49] Yang J, Hong G, Kim YS, et al. Lung Disease Diagnostic Model Through IgG Sensitization to Microbial Extracellular Vesicles[J]. Allergy Asthma Immunol Res, 2020, 12: 669-683. doi: 10.4168/aair.2020.12.4.669 [50] Han P, Bartold PM, Salomon C, et al. Salivary Outer Membrane Vesicles and DNA Methylation of Small Extracellular Vesicles as Biomarkers for Periodontal Status: A Pilot Study[J]. Int J Mol Sci, 2021, 22: 2423. doi: 10.3390/ijms22052423 [51] Yoon H, Kim NE, Park J, et al. Analysis of the gut microbiome using extracellular vesicles in the urine of patients with colorectal cancer[J]. Korean J Intern Med, 2023, 38: 27-38. doi: 10.3904/kjim.2022.112 [52] VesikarI T, Esposito S, Prymula R, et al. Immunogenicity and safety of an investigational multicomponent, recombin-ant, meningococcal serogroup B vaccine (4CMenB) administered concomitantly with routine infant and child vaccinations: results of two randomised trials[J]. Lancet, 2013, 381: 825-835. doi: 10.1016/S0140-6736(12)61961-8 [53] Kaparakis-Liaskos M, Ferrero RL. Immune modulation by bacterial outer membrane vesicles[J]. Nat Rev Immunol, 2015, 15: 375-387. doi: 10.1038/nri3837 [54] Wo J, Lv ZY, Sun JN, et al. Engineering probiotic-derived outer membrane vesicles as functional vaccine carriers to enhance immunity against SARS-CoV-2[J]. iScience, 2023, 26: 105772. doi: 10.1016/j.isci.2022.105772 [55] Chen L, Valentine JL, Huang CJ, et al. Outer membrane vesicles displaying engineered glycotopes elicit protective antibodies[J]. Proc Natl Acad Sci U S A, 2016, 113: E3609-E3618. doi: 10.1073/pnas.1523686113 [56] Ñahui Palomino RA, Vanpouille C, Laghi L, et al. Extracellular vesicles from symbiotic vaginal lactobacilli inhibit HIV-1 infection of human tissues[J]. Nat Commun, 2019, 10: 5656. doi: 10.1038/s41467-019-13468-9 [57] Kim MH, Choi S J, Choi HI, et al. Lactobacillus plantarum-derived Extracellular Vesicles Protect Atopic Dermatitis Induced by Staphylococcus aureus-derived Extracellular Vesicles[J]. Allergy Asthma Immunol Res, 2018, 10: 516-532. doi: 10.4168/aair.2018.10.5.516 [58] Tong L, Zhang X, Hao H, et al. Lactobacillus rhamnosus GG Derived Extracellular Vesicles Modulate Gut Microbiota and Attenuate Inflammatory in DSS-Induced Colitis Mice[J]. Nutrients, 2021, 13: 3319. doi: 10.3390/nu13103319 [59] Hu R, Lin H, Wang M, et al. Lactobacillus reuteri-derived extracellular vesicles maintain intestinal immune homeostasis against lipopolysaccharide-induced inflammatory responses in broilers[J]. J Anim Sci Biotechnol, 2021, 12: 25. doi: 10.1186/s40104-020-00532-4 [60] Lee DH, Park HK, Lee HR, et al. Immunoregulatory effects of Lactococcus lactis-derived extracellular vesicles in allergic asthma[J]. Clin Transl Allergy, 2022, 12: e12138. doi: 10.1002/clt2.12138 [61] Croatti V, Parolin C, Giordani B, et al. Lactobacilli extracellular vesicles: potential postbiotics to support the vaginal microbiota homeostasis[J]. Microb Cell Fact, 2022, 21: 237. doi: 10.1186/s12934-022-01963-6 [62] Choi J, Kwon H, Kim YK, et al. Extracellular Vesicles from Gram-positive and Gram-negative Probiotics Remediate Stress-Induced Depressive Behavior in Mice[J]. Mol Neurobiol, 2022, 59: 2715-2728. doi: 10.1007/s12035-021-02655-9 [63] Ye W, Chen Z, He Z, et al. Lactobacillus plantarum-Derived Postbiotics Ameliorate Acute Alcohol-Induced Liver Injury by Protecting Cells from Oxidative Damage, Improving Lipid Metabolism, and Regulating Intestinal Microbiota[J]. Nutrients, 2023, 15: 845. doi: 10.3390/nu15040845 [64] Wang X, Lin S, Wang L, et al. Versatility of bacterial outer membrane vesicles in regulating intestinal homeostasis[J]. Sci Adv, 2023, 9: eade5079. [65] Starnes CO. Coley's toxins[J]. Nature, 1992, 360: 23. [66] Kim OY, ParK HT, Dinh NTH, et al. Bacterial outer membrane vesicles suppress tumor by interferon-γ-mediated antitumor response[J]. Nat Commun, 2017, 8: 626. doi: 10.1038/s41467-017-00729-8 [67] Qing S, Lyu C, Zhu L, et al. Biomineralized Bacterial Outer Membrane Vesicles Potentiate Safe and Efficient Tumor Microenvironment Reprogramming for Anticancer Therapy[J]. Adv Mater, 2020, 32: e2002085. doi: 10.1002/adma.202002085 [68] Li Y, Ma X, Yue Y, et al. Rapid Surface Display of mRNA Antigens by Bacteria-Derived Outer Membrane Vesicles for a Personalized Tumor Vaccine [J]. Adv Mater, 2022, 34: e2109984. doi: 10.1002/adma.202109984 [69] Meng F, Li L, Zhang Z, et al. Biosynthetic neoantigen displayed on bacteria derived vesicles elicit systemic antitumour immunity[J]. J Extracell Vesicles, 2022, 11: e12289. doi: 10.1002/jev2.12289 [70] Kuerban K, Gao X, Zhang H, et al. Doxorubicin-loaded bacterial outer-membrane vesicles exert enhanced anti-tumor efficacy in non-small-cell lung cancer[J]. Acta Pharm Sin B, 2020, 10: 1534-1548. [71] Liu XZ, Wen ZJ, Li YM, et al. Bioengineered Bacterial Membrane Vesicles with Multifunctional Nanoparticles as a Versatile Platform for Cancer Immunotherapy[J]. ACS Appl Mater Interfaces, 2023, 15: 3744-3759. doi: 10.1021/acsami.2c18244 [72] Bauman SJ, Kuehn MJ. Purification of outer membrane vesicles from Pseudomonas aeruginosa and their activation of an IL-8 response[J]. Microbes Infect, 2006, 8: 2400-2408. doi: 10.1016/j.micinf.2006.05.001 [73] Northrop-Albrecht EJ, Taylor WR, Huang BQ, et al. Assessment of extracellular vesicle isolation methods from human stool supernatant[J]. J Extracell Vesicles, 2022, 11: e12208. doi: 10.1002/jev2.12208 [74] Hong J, Dauros-Singorenko P, Whitcombe A, et al. Analysis of the Escherichia coli extracellular vesicle proteome identifies markers of purity and culture conditions[J]. J Extracell Vesicles, 2019, 8: 1632099. [75] Gelibter S, Marostica G, Mandelli A, et al. The impact of storage on extracellular vesicles: A systematic study[J]. J Extracell Vesicles, 2022, 11: e12162. doi: 10.1002/jev2.12162 -