留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自动化文献筛选工具在系统评价中的应用

郭玉杰 张雪芹 孙文宇 邓宏勇

郭玉杰, 张雪芹, 孙文宇, 邓宏勇. 自动化文献筛选工具在系统评价中的应用[J]. 协和医学杂志. doi: 10.12290/xhyxzz.2023-0257
引用本文: 郭玉杰, 张雪芹, 孙文宇, 邓宏勇. 自动化文献筛选工具在系统评价中的应用[J]. 协和医学杂志. doi: 10.12290/xhyxzz.2023-0257
GUO Yujie, ZHANG Xueqin, SUN Wenyu, DENG Hongyong. Application of Automated Literature Screening Tools in Systematic Reviews[J]. Medical Journal of Peking Union Medical College Hospital. doi: 10.12290/xhyxzz.2023-0257
Citation: GUO Yujie, ZHANG Xueqin, SUN Wenyu, DENG Hongyong. Application of Automated Literature Screening Tools in Systematic Reviews[J]. Medical Journal of Peking Union Medical College Hospital. doi: 10.12290/xhyxzz.2023-0257

自动化文献筛选工具在系统评价中的应用

doi: 10.12290/xhyxzz.2023-0257
基金项目: 

国家自然科学基金(81873183)

详细信息
    通讯作者:

    邓宏勇,E-mail:denghy@shutcm.edu.cn

  • 中图分类号: TP31;R-05

Application of Automated Literature Screening Tools in Systematic Reviews

Funds: 

National Natural Science Foundation of China (81873183)

  • 摘要: 系统评价是循证医学研究工作的基础,高质量的系统评价代表了评估治疗效果的最高证据水平。传统系统评价主要由人工完成,然而海量文献的阅读与筛选工作需花费临床研究者大量精力与时间,效率较低,无法适应快速决策的需求。本文对现有的用于系统评价文献筛选的自动化工具进行系统整理,分析其各自性能、特点和使用情况,以了解该领域发展现状,为相关研究和应用提供参考。
  • [1] 杨丰春,徐晓巍,李姣.循证医学研究中的证据自动更新方法研究[J].中国数字医学,2022,17(1):44-49.
    [2] 徐昆明,钱堃,何艳屏等.中国近20年小儿烧伤流行病学的系统性评价[J].按摩与康复医学,2021,12(10):84-88.
    [3] 毛渤淳,陈圣恺,谢雨,姚攀,李春洁.经典深度学习算法对中文随机对照试验智能判别应用[J].中国循证医学杂志,2019,19(11):1262-1267.
    [4] Borah R, Brown A W, Capers P L, et al. Analysis of the time and workers needed to conduct systematic reviews of medical interventions using data from the PROSPERO registry[J]. BMJ open, 2017, 7(2):e012545.
    [5] 张雪芹,张薇,郑培永,邓宏勇.计算机辅助系统评价方法学研究和应用[J].中国循证医学杂志,2021,21(1):111-116.
    [6] McKibbon K A, Wilczynski N L, Haynes R B, et al. Retrieving randomized controlled trials from medline:a comparison of 38 published search filters[J]. Health Information & Libraries Journal, 2009, 26(3):187-202.
    [7] Wallace B C, Noel-Storr A, Marshall I J, et al. Identifying reports of randomized controlled trials (RCTs) via a hybrid machine learning and crowdsourcing approach[J]. Journal of the American Medical Informatics Association, 2017, 24(6):1165-1168.
    [8] Marshall I J, Noel-Storr A, Kuiper J, et al. Machine learning for identifying randomized controlled trials:an evaluation and practitioner's guide[J]. Research synthesis methods, 2018, 9(4):602-614.
    [9] Wallace B C, Small K, Brodley C E, et al. Deploying an interactive machine learning system in an evidence-based practice center:abstrack[J]. ACM, 2012:819-824.
    [10] Park S E, Thomas J. Evidence synthesis software[J]. BMJ evidence-based medicine, 2018.
    [11] Gates A, Gates M, Sebastianski M, et al. The semi-automation of title and abstract screening:a retrospective exploration of ways to leverage Abstrackr's relevance predictions in systematic and rapid reviews[J]. BMC medical research methodology, 2020, 20(1):1-9.
    [12] Ouzzani M, Hammady H, Fedorowicz Z, et al. Rayyan-a web and mobile app for systematic reviews[J]. Systematic reviews, 2016, 5:1-10.
    [13] Przybyła P, Brockmeier A J, Kontonatsios G, et al. Prioritising references for systematic reviews with RobotAnalyst:a user study[J]. Research synthesis methods, 2018, 9(3):470-488.
    [14] Cheng S H, Augustin C, Bethel A,et al. Using machine learning to advance synthesis and use of conservation and environmental evidence[J]. Conservation Biology, 2018.
    [15] Van De Schoot R, De Bruin J, Schram R, et al. An open source machine learning framework for efficient and transparent systematic reviews[J]. Nature machine intelligence, 2021, 3(2):125-133.
    [16] 秦璇,刘佳利,王雨宁等.自然语言处理在系统评价中的应用[J].中国循证医学杂志,2021,21(6):715-720.
    [17] Cohen A M, Hersh W R, Peterson K, et al. Reducing workload in systematic review preparation using automated citation classification[J]. Journal of the American Medical Informatics Association, 2006, 13(2):206-219.
    [18] Gates A, Johnson C, Hartling L. Technology-assisted title and abstract screening for systematic reviews:a retrospective evaluation of the Abstrackr machine learning tool[J]. Systematic reviews, 2018, 7(1):1-9.
    [19] Tsou A Y, Treadwell J R, Erinoff E, et al. Machine learning for screening prioritization in systematic reviews:comparative performance of Abstrackr and EPPI-Reviewer[J]. Systematic reviews, 2020, 9:1-14.
    [20] Howard B E, Phillips J, Miller K, et al. SWIFT-Review:a text-mining workbench for systematic review[J]. Systematic reviews, 2016, 5:1-16.
    [21] 李世磊.基于文献相似度的系统评价引文筛选系统的设计与实现[D].电子科技大学,2020.
    [22] Marshall I J, Wallace B C. Toward systematic review automation:a practical guide to using machine learning tools in research synthesis[J]. Systematic reviews, 2019, 8:1-10.
    [23] Van Altena A J, Spijker R, Olabarriaga S D. Usage of automation tools in systematic reviews[J]. Research synthesis methods, 2019, 10(1):72-82.
    [24] 田宇.基于XML的WEB信息抽取系统研究与实现[D].内蒙古大学,2011.
    [25] 陈耀龙,罗旭飞,史乾灵等.人工智能如何改变指南的未来[J].协和医学杂志,2021,12(1):114-121.
  • 加载中
计量
  • 文章访问数:  63
  • HTML全文浏览量:  9
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-30
  • 网络出版日期:  2023-12-18

目录

    /

    返回文章
    返回

    【温馨提醒】近日,《协和医学杂志》编辑部接到作者反映,有多名不法人员冒充期刊编辑发送见刊通知,鼓动作者添加微信,从而骗取版面费的行为。特提醒您,本刊与作者联系的方式均为邮件通知或电话,稿件进度通知邮箱为:mjpumch@126.com,编辑部电话为:010-69154261,请提高警惕,谨防上当受骗!如有任何疑问,请致电编辑部核实。谢谢!