[1]
|
王志刚, 陈永学, 尹春平, 等. 炎症反应在围术期神经认知障碍中的作用研究进展[J]. 临床麻醉学杂志, 2023, 39:189-192. |
[2]
|
Gonzales MM, Garbarino VR, Pollet E, et al. Biological aging processes underlying cognitive decline and neurodegenerative disease[J]. J Clin Invest, 2022, 132:e158453. |
[3]
|
Rost NS, Brodtmann A, Pase MP, et al. Post-Stroke Cognitive Impairment and Dementia[J]. Circ Res, 2022, 130:1252-1271. |
[4]
|
Lecca D, Jung YJ, Scerba MT, et al. Role of chronic neuroinflammation in neuroplasticity and cognitive function: A hypothesis[J]. Alzheimers Dement, 2022, 18:2327-2340. |
[5]
|
De Araújo Boleti AP, De Oliveira Flores TM, Moreno SE, et al. Neuroinflammation: An overview of neurodegenerative and metabolic diseases and of biotechnological studies[J]. Neurochem Int, 2020, 136:104714. |
[6]
|
Zhang M, Wang XL, Shi H, et al. Betaine Inhibits NLRP3 Inflammasome Hyperactivation and Regulates Microglial M1/M2 Phenotypic Differentiation, Thereby Attenuating LipopolysaccharideInduced Depression-Like Behavior[J]. J Immunol Res, 2022, 2022:9313436. |
[7]
|
He XF, Li LL, Xian WB, et al. Chronic colitis exacerbates NLRP3-dependent neuroinflammation and cognitive impairment in middle-aged brain[J]. J Neuroinflammation, 2021, 18:153. |
[8]
|
Heneka MT, Kummer MP, Stutz A, et al. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice[J]. Nature, 2013, 493:674-678. |
[9]
|
Ising C, Venegas C, Zhang S, et al. NLRP3 inflammasome activation drives tau pathology[J]. Nature, 2019, 575:669-673. |
[10]
|
Heneka MT, Golenbock D, Latz E, et al. Immediate and long-term consequences of COVID-19 infections for the development of neurological disease[J]. Alzheimers Res Ther, 2020, 12:69. |
[11]
|
Zhang X, Xu A, Lv J, et al. Development of small molecule inhibitors targeting NLRP3 inflammasome pathway for inflammatory diseases[J]. Eur J Med Chem, 2020, 185:111822. |
[12]
|
Cowan M, Petri WA, Jr. Microglia: Immune Regulators of Neurodevelopment[J]. Front Immunol, 2018, 9:2576. |
[13]
|
Lu Y, Zhou M, Li Y, et al. Minocycline promotes functional recovery in ischemic stroke by modulating microglia polarization through STAT1/STAT6 pathways[J]. Biochem Pharmacol, 2021, 186:114464. |
[14]
|
Wei J A, Liu L, Song X, et al. Physical exercise modulates the microglial complement pathway in mice to relieve cortical circuitry deficits induced by mutant human TDP-43[J]. Cell Rep, 2023, 42:112240. |
[15]
|
Karino K, Kono M, Takeyama S, et al. Inhibitor of NF-κB Kinase Subunit ε Contributes to Neuropsychiatric Manifestations in Lupus-Prone Mice Through Microglial Activation[J]. Arthritis Rheumatol, 2023, 75:411-423. |
[16]
|
Chen Y, Peng F, Xing Z, et al. Beneficial effects of natural flavonoids on neuroinflammation[J]. Front Immunol, 2022, 13:1006434. |
[17]
|
Kelley N, Jeltema D, Duan Y, et al. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation[J]. Int J Mol Sci, 2019, 20:3328. |
[18]
|
Guo Y, Gan X, Zhou H, et al. Fingolimod suppressed the chronic unpredictable mild stress-induced depressive-like behaviors via affecting microglial and NLRP3 inflammasome activation[J]. Life Sci, 2020, 263:118582. |
[19]
|
Heneka MT, Kummer MP, Stutz A, et al. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice[J]. Nature, 2013, 493:674-678. |
[20]
|
De Calignon A, Fox LM, Pitstick R, et al. Caspase activation precedes and leads to tangles[J]. Nature, 2010, 464:1201-1204. |
[21]
|
Qin Y , Qiu J , Wang P, et al. Impaired autophagy in microglia aggravates dopaminergic neurodegeneration by regulating NLRP3 inflammasome activation in experimental models of Parkinson's disease[J]. Brain Behav Immun, 2021, 91:324-338. |
[22]
|
Haque ME, Akther M, Jakaria M, et al. Targeting the microglial NLRP3 inflammasome and its role in Parkinson's disease[J]. Mov Disord, 2020, 35:20-33. |
[23]
|
Hanslik KL, Ulland TK. The Role of Microglia and the Nlrp3 Inflammasome in Alzheimer's Disease[J]. Front Neurol, 2020, 11:570711. |
[24]
|
Han C, Yang Y, Guan Q, et al. New mechanism of nerve injury in Alzheimer's disease: β-amyloidinduced neuronal pyroptosis[J]. J Cell Mol Med, 2020, 24:8078-8090. |
[25]
|
van Zeller M, Dias D, Sebastião AM, et al. NLRP3 Inflammasome: A Starring Role in Amyloid- β- and Tau-Driven Pathological Events in Alzheimer's Disease[J]. J Alzheimers Dis, 2021, 83:939- 961. |
[26]
|
张韬, 赵磊, 战锐, 等. 中医药干预神经退行性疾病引起的认知功能障碍的分子机制(英文) [J]. 生物化学与生物物理进展, 2020, 47:729-742. |
[27]
|
Moonen S, Koper MJ, Van Schoor E, et al. Pyroptosis in Alzheimer's disease: cell type-specific activation in microglia, astrocytes and neurons[J]. Acta Neuropathol, 2023, 145:175-195. |
[28]
|
Nisa FY, Rahman MA, Hossen MA, et al. Role of neurotoxicants in the pathogenesis of Alzheimer's disease: a mechanistic insight[J]. Ann Med, 2021, 53:1476-1501. |
[29]
|
Wang Z, Meng S, Cao L, et al. Critical role of NLRP3-caspase-1 pathway in age-dependent isoflurane-induced microglial inflammatory response and cognitive impairment[J]. J Neuroinflammation, 2018, 15:109. |
[30]
|
Madhu LN, Kodali M, Attaluri S, et al. Melatonin improves brain function in a model of chronic Gulf War Illness with modulation of oxidative stress, NLRP3 inflammasomes, and BDNF-ERKCREB pathway in the hippocampus[J]. Redox Biol, 2021, 43:101973. |
[31]
|
Lee HJ, Park JH, Hoe HS. Idebenone Regulates Aβ and LPS-Induced Neurogliosis and Cognitive Function Through Inhibition of NLRP3 Inflammasome/IL-1β Axis Activation[J]. Front Immunol, 2022, 13:749336. |
[32]
|
Lam S, Hérard AS, Boluda S, et al. Pathological changes induced by Alzheimer's brain inoculation in amyloid-beta plaque-bearing mice[J]. Acta Neuropathol Commun, 2022, 10:112. |
[33]
|
Chen Q, Abrigo J, Deng M, et al. Diffusion Changes in Hippocampal Cingulum in Early Biologically Defined Alzheimer's Disease[J]. J Alzheimers Dis, 2023, 91:1007-1017. |
[34]
|
Datta M, Staszewski O, Raschi E, et al. Histone Deacetylases 1 and 2 Regulate Microglia Function during Development, Homeostasis, and Neurodegeneration in a Context-Dependent Manner[J]. Immunity, 2018, 48:514-529.e6. |
[35]
|
Baik SH, Kang S, Lee W, et al. A Breakdown in Metabolic Reprogramming Causes Microglia Dysfunction in Alzheimer's Disease[J]. Cell Metab, 2019, 30:493-507.e6. |
[36]
|
Lin C, Zhao S, Zhu Y, et al. Microbiota-gut-brain axis and toll-like receptors in Alzheimer's disease[J]. Comput Struct Biotechnol J, 2019, 17:1309-1317. |
[37]
|
Liu Y, Dai Y, Li Q, et al. Beta-amyloid activates NLRP3 inflammasome via TLR4 in mouse microglia[J]. Neurosci Lett, 2020, 736:135279. |
[38]
|
Mishra SR, Mahapatra KK, Behera BP, et al. Mitochondrial dysfunction as a driver of NLRP3 inflammasome activation and its modulation through mitophagy for potential therapeutics[J]. Int J Biochem Cell Biol, 2021, 136:106013. |
[39]
|
Dong AQ, Yang YP, Jiang SM, et al. Pramipexole inhibits astrocytic NLRP3 inflammasome activation via Drd3-dependent autophagy in a mouse model of Parkinson's disease[J]. Acta Pharmacol Sin, 2023, 44:32-43. |
[40]
|
Pupyshev AB, Tenditnik MV, Ovsyukova MV, et al. Restoration of Parkinson's Disease-Like Deficits by Activating Autophagy through mTOR-Dependent and mTOR-Independent Mechanisms in Pharmacological and Transgenic Models of Parkinson's Disease in Mice[J]. Bull Exp Biol Med, 2021, 171:425-430. |
[41]
|
Zhang Q, Zhou J, Shen M, et al. Pyrroloquinoline Quinone Inhibits Rotenone-Induced Microglia Inflammation by Enhancing Autophagy[J]. Molecules, 2020, 25:4359. |
[42]
|
Ghavami S, Shojaei S, Yeganeh B, et al. Autophagy and apoptosis dysfunction in neurodegenerative disorders[J]. Prog Neurobiol, 2014, 112:24-49. |
[43]
|
Ying ZM , Lv Q K , Yao XY , et al. BAG3 promotes autophagy and suppresses NLRP3 inflammasome activation in Parkinson's disease[J]. Ann Transl Med, 2022, 10:1218. |
[44]
|
Qiu WQ, Ai W, Zhu FD, et al. Polygala saponins inhibit NLRP3 inflammasome-mediated neuroinflammation via SHP-2-Mediated mitophagy[J]. Free Radic Biol Med, 2022, 179:76-94. |
[45]
|
Cho MH, Cho K, Kang HJ, et al. Autophagy in microglia degrades extracellular β-amyloid fibrils and regulates the NLRP3 inflammasome[J]. Autophagy, 2014, 10:1761-1775. |
[46]
|
Qiu Z, Zhang H, Xia M, et al. Programmed Death of Microglia in Alzheimer's Disease: Autophagy, Ferroptosis, and Pyroptosis[J]. J Prev Alzheimers Dis, 2023, 10:95-103. |
[47]
|
Wang X, Jia J. Magnolol improves Alzheimer's disease-like pathologies and cognitive decline by promoting autophagy through activation of the AMPK/mTOR/ULK1 pathway[J]. Biomed Pharmacother, 2023, 161:114473. |
[48]
|
Chang YP, Ka SM, Hsu WH, et al. Resveratrol inhibits NLRP3 inflammasome activation by preserving mitochondrial integrity and augmenting autophagy[J]. J Cell Physiol, 2015, 230:1567- 1579. |
[49]
|
Zhao J, Fu Y, Yamazaki Y, et al. APOE4 exacerbates synapse loss and neurodegeneration in Alzheimer's disease patient iPSC-derived cerebral organoids[J]. Nat Commun, 2020, 11:5540. |
[50]
|
Peng L, Bestard-Lorigados I, Song W. The synapse as a treatment avenue for Alzheimer's Disease[J]. Mol Psychiatry, 2022, 27:2940-2949. |
[51]
|
Harris JA, Devidze N, Verret L, et al. Transsynaptic progression of amyloid-β-induced neuronal dysfunction within the entorhinal-hippocampal network[J]. Neuron, 2010, 68:428-441. |
[52]
|
Lonnemann N, Hosseini S, Marchetti C, et al. The NLRP3 inflammasome inhibitor OLT1177 rescues cognitive impairment in a mouse model of Alzheimer's disease[J]. Proc Natl Acad Sci U S A, 2020, 117:32145-32154. |
[53]
|
梁晓, 金香兰, 彭丹涛, 等. 复方苁蓉益智胶囊治疗血管性痴呆临床应用专家共识[J]. 中国中药杂志, 2022, 47:6514-6519. |
[54]
|
Jin X, Liu MY, Zhang DF, et al. Baicalin mitigates cognitive impairment and protects neurons from microglia-mediated neuroinflammation via suppressing NLRP3 inflammasomes and TLR4/NF-κB signaling pathway[J]. CNS Neurosci Ther, 2019, 25:575-590. |