-
摘要: 疫苗接种是防止传染病传播最有效的方法, 但其诱导的免疫反应在不同地区个体和人群之间存在显著差异。最新研究表明, 肠道微生物群的组成和功能在疫苗接种后的免疫反应中发挥关键作用。本文旨在阐述肠道微生物群在接种疫苗的不同人群、动物间的差异, 探讨肠道微生物群对疫苗免疫效力的影响及可能机制, 并阐述靶向肠道微生物群改善疫苗有效性的策略。Abstract: Vaccine is the most effective method to prevent the spread of communicable diseases, but the immune response it induces varies significantly among individuals and populations in different regions. Recent studies have shown that the composition and function of the gut microbiota play a key role in the immune response following vaccination. This article aims to explain the differences in gut microbiota among different vaccinated populations and animals, discuss how the gut microbiota affects the immune efficacy of the vaccine, and summarize strategies for targeting the gut microbiota to improve vaccine efficacy.
-
Key words:
- gut microbiota /
- vaccine /
- immune efficacy
作者贡献:黄碧青负责研究设计及论文撰写;李兰娟负责研究指导、论文审校。利益冲突:所有作者均声明不存在利益冲突 -
表 1 肠道微生物群构成对疫苗效力的影响
研究来源 动物或国别 接种疫苗 与疫苗效力相关的肠道微生物群构成或研究结果 动物实验 小鼠[4] 卵清蛋白 乳杆菌科/瘤胃球菌科/梭状芽胞杆菌科 小鼠[5] 狂犬病病毒疫苗 与梭菌目和毛螺菌科细菌丰度呈正相关 临床研究 加纳/荷兰[6] 轮状病毒疫苗 加纳和荷兰应答者牛链球菌丰度增加、拟杆菌门丰度减少;加纳无应答者肠道链球菌增加、类杆菌减少 巴基斯坦/荷兰[7] 轮状病毒疫苗 应答者牛链球菌丰度增加/拟杆菌门丰度减少 加纳[8] 轮状病毒疫苗 噬菌体/肠道病毒B/新型共病毒的存在与疫苗效力呈负相关 尼加拉瓜[9] 轮状病毒疫苗 变形杆菌/埃格氏菌丰度与疫苗效力呈正相关,梭杆菌/肠杆菌科丰度与疫苗效力呈负相关 津巴布韦[10] 轮状病毒疫苗 多形拟杆菌与抗轮状病毒IgA滴度相关 孟加拉国[11] 脊髓灰质炎疫苗/卡介苗/破伤风疫苗/乙肝疫苗 长双歧杆菌亚种丰度与疫苗效力呈正相关;梭状芽胞杆菌/肠杆菌/假单胞菌丰度与疫苗效力呈负相关 美国新罕布什尔州[12] 破伤风疫苗 双歧杆菌科丰度与疫苗效力呈负相关,胞苷二磷酸-二酰基甘油生物合成途径相关的物种丰度与疫苗效力呈正相关 荷兰[13] 卡介苗 卡介苗诱导的非特异性免疫应答与罗斯氏菌属丰度呈负相关,特异性免疫应答与瘤胃球菌属/迟缓埃格特菌丰度呈正相关。 中国香港[14] 新型冠状病毒疫苗(科兴/BNT162b2) 双歧杆菌丰度与科兴疫苗效力呈正相关;富含具有鞭毛和菌毛的细菌与BNT162b2疫苗效力呈正相关;普雷沃氏菌和两种巨单胞菌丰度与科兴和BNT162b2疫苗副作用呈负相关 英国[15] 新型冠状病毒疫苗(BNT162b2/ChAdOx1) 与嗜胆菌属丰度呈正相关,与链球菌属丰度呈负相关 韩国[16] 新型冠状病毒疫苗(BNT162b2/ChAdOx1) 副萨特氏菌/优杆菌属/布劳特氏菌丰度与ChAdOx1免疫应答呈正相关;瘤胃球菌/龙包茨氏菌/毛螺菌/梭菌/真杆菌/铁门罗螺菌/盲肠罗斯拜瑞氏菌丰度与BNT162b2免疫应答呈正相关 -
[1] Lynn DJ, Benson SC, Lynn MA, et al. Modulation of immune responses to vaccination by the microbiota: implications and potential mechanisms[J]. Nat Rev Immunol, 2022, 22: 33-46. doi: 10.1038/s41577-021-00554-7 [2] de Jong SE, Olin A, Pulendran B. The Impact of the Microbiome on Immunity to Vaccination in Humans[J]. Cell Host Microbe, 2020, 28: 169-179. doi: 10.1016/j.chom.2020.06.014 [3] Jordan A, Carding SR, Hall LJ. The early-life gut microbiome and vaccine efficacy[J]. Lancet Microbe, 2022, 3: e787-e794. doi: 10.1016/S2666-5247(22)00185-9 [4] Swaminathan G, Citron M, Xiao J, et al. Vaccine Hyporesponse Induced by Individual Antibiotic Treatment in Mice and Non-Human Primates Is Diminished upon Recovery of the Gut Microbiome[J]. Vaccines (Basel), 2021, 9: 1340. doi: 10.3390/vaccines9111340 [5] Zhang Y, Wu Q, Zhou M, et al. Composition of the murine gut microbiome impacts humoral immunity induced by rabies vaccines[J]. Clin Transl Med, 2020, 10: e161. doi: 10.1002/ctm2.161 [6] Harris VC, Armah G, Fuentes S, et al. Significant Correlation Between the Infant Gut Microbiome and Rotavirus Vaccine Response in Rural Ghana[J]. J Infect Dis, 2017, 215: 34-41. doi: 10.1093/infdis/jiw518 [7] Harris V, Ali A, Fuentes S, et al. Rotavirus vaccine response correlates with the infant gut microbiota composition in Pakistan[J]. Gut Microbes, 2018, 9: 93-101. doi: 10.1080/19490976.2017.1376162 [8] Kim AH, Armah G, Dennis F, et al. Enteric virome negatively affects seroconversion following oral rotavirus vaccination in a longitudinally sampled cohort of Ghanaian infants[J]. Cell Host Microbe, 2022, 30: 110-123. e115. doi: 10.1016/j.chom.2021.12.002 [9] Fix J, Chandrashekhar K, Perez J, et al. Association between Gut Microbiome Composition and Rotavirus Vaccine Response among Nicaraguan Infants[J]. Am J Trop Med Hyg, 2020, 102: 213-219. doi: 10.4269/ajtmh.19-0355 [10] Robertson RC, Church JA, Edens TJ, et al. The fecal microbiome and rotavirus vaccine immunogenicity in rural Zimbabwean infants[J]. Vaccine, 2021, 39: 5391-5400. doi: 10.1016/j.vaccine.2021.07.076 [11] Huda MN, Ahmad SM, Alam MJ, et al. Bifidobacterium Abundance in Early Infancy and Vaccine Response at 2 Years of Age[J]. Pediatrics, 2019, 143: e20181489. doi: 10.1542/peds.2018-1489 [12] Moroishi Y, Gui J, Nadeau KC, et al. A prospective study of the infant gut microbiome in relation to vaccine response[J]. Pediatr Res, 2023, 93: 725-731. doi: 10.1038/s41390-022-02154-0 [13] Stražar M, Mourits VP, Koeken V, et al. The influence of the gut microbiome on BCG-induced trained immunity[J]. Genome Biol, 2021, 22: 275. doi: 10.1186/s13059-021-02482-0 [14] Ng SC, Peng Y, Zhang L, et al. Gut microbiota composition is associated with SARS-CoV-2 vaccine immunogenicity and adverse events[J]. Gut, 2022, 71: 1106-1116. doi: 10.1136/gutjnl-2021-326563 [15] Alexander JL, Mullish BH, Danckert NP, et al. The gut microbiota and metabolome are associated with diminished COVID-19 vaccine-induced antibody responses in immunosuppressed inflammatory bowel disease patients[J]. EBioMedicine, 2023, 88: 104430. doi: 10.1016/j.ebiom.2022.104430 [16] Seong H, Choi BK, Han YH, et al. Gut microbiota as a potential key to modulating humoral immunogenicity of new platform COVID-19 vaccines[J]. Signal Transduct Target Ther, 2023, 8: 178. doi: 10.1038/s41392-023-01445-0 [17] Lynn MA, Tumes DJ, Choo JM, et al. Early-Life Antibiotic-Driven Dysbiosis Leads to Dysregulated Vaccine Immune Responses in Mice[J]. Cell Host Microbe, 2018, 23: 653-660. e655. doi: 10.1016/j.chom.2018.04.009 [18] Yitbarek A, Astill J, Hodgins DC, et al. Commensal gut microbiota can modulate adaptive immune responses in chickens vaccinated with whole inactivated avian influenza virus subtype H9N2[J]. Vaccine, 2019, 37: 6640-6647. doi: 10.1016/j.vaccine.2019.09.046 [19] Nadeem S, Maurya SK, Das DK, et al. Gut Dysbiosis Thwarts the Efficacy of Vaccine Against Mycobacterium tuberculosis[J]. Front Immunol, 2020, 11: 726. doi: 10.3389/fimmu.2020.00726 [20] Parker EPK, Bronowski C, Sindhu KNC, et al. Impact of maternal antibodies and microbiota development on the immunogenicity of oral rotavirus vaccine in African, Indian, and European infants[J]. Nat Commun, 2021, 12: 7288. doi: 10.1038/s41467-021-27074-1 [21] Gonçalves JIB, Borges TJ, de Souza APD. Microbiota and the Response to Vaccines Against Respiratory Virus[J]. Front Immunol, 2022, 13: 889945. doi: 10.3389/fimmu.2022.889945 [22] Oh JZ, Ravindran R, Chassaing B, et al. TLR5-mediated sensing of gut microbiota is necessary for antibody responses to seasonal influenza vaccination[J]. Immunity, 2014, 41: 478-492. doi: 10.1016/j.immuni.2014.08.009 [23] Abt MC, Osborne LC, Monticelli LA, et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity[J]. Immunity, 2012, 37: 158-170. doi: 10.1016/j.immuni.2012.04.011 [24] Wang B, Zhang L, Wang Y, et al. Alterations in microbiota of patients with COVID-19: potential mechanisms and therapeutic interventions[J]. Signal Transduct Target Ther, 2022, 7: 143. doi: 10.1038/s41392-022-00986-0 [25] Silva F, Enaud R, Creissen E, et al. Mouse Subcutaneous BCG Vaccination and Mycobacterium tuberculosis Infection Alter the Lung and Gut Microbiota[J]. Microbiol Spectr, 2022, 10: e0169321. doi: 10.1128/spectrum.01693-21 [26] Macpherson AJ. Do the Microbiota Influence Vaccines and Protective Immunity to Pathogens? Issues of Sovereignty, Federalism, and Points-Testing in the Prokaryotic and Eukaryotic Spaces of the Host-Microbial Superorganism[J]. Cold Spring Harb Perspect Biol, 2018, 10: a029363. doi: 10.1101/cshperspect.a029363 [27] Littman DR. Do the Microbiota Influence Vaccines and Protective Immunity to Pathogens? If So, Is There Potential for Efficacious Microbiota-Based Vaccines?[J]. Cold Spring Harb Perspect Biol, 2018, 10: a029355. doi: 10.1101/cshperspect.a029355 [28] Jia L, Weng S, Wu J, et al. Preexisting antibodies targeting SARS-CoV-2 S2 cross-react with commensal gut bacteria and impact COVID-19 vaccine induced immunity[J]. Gut Microbes, 2022, 14: 2117503. doi: 10.1080/19490976.2022.2117503 [29] Yilmaz B, Portugal S, Tran TM, et al. Gut microbiota elicits a protective immune response against malaria transmission[J]. Cell, 2014, 159: 1277-1289. doi: 10.1016/j.cell.2014.10.053 [30] Hagan T, Cortese M, Rouphael N, et al. Antibiotics-Driven Gut Microbiome Perturbation Alters Immunity to Vaccines in Humans[J]. Cell, 2019, 178: 1313-1328. e1313. doi: 10.1016/j.cell.2019.08.010 [31] Harris VC, Haak BW, Handley SA, et al. Effect of Antibiotic-Mediated Microbiome Modulation on Rotavirus Vaccine Immunogenicity: A Human, Randomized-Control Proof-of-Concept Trial[J]. Cell Host Microbe, 2018, 24: 197-207. e194. doi: 10.1016/j.chom.2018.07.005 [32] Mullié C, Yazourh A, Thibault H, et al. Increased poliovirus-specific intestinal antibody response coincides with promotion of Bifidobacterium longum-infantis and Bifido-bacterium breve in infants: a randomized, double-blind, placebo-controlled trial[J]. Pediatr Res, 2004, 56: 791-795. doi: 10.1203/01.PDR.0000141955.47550.A0 [33] Sandionigi A, De Giani A, Tursi F, et al. Effectiveness of Multistrain Probiotic Formulation on Common Infectious Disease Symptoms and Gut Microbiota Modulation in Flu-Vaccinated Healthy Elderly Subjects[J]. Biomed Res Int, 2022, 2022: 3860896. [34] Laver JR, Gbesemete D, Dale AP, et al. A recombinant commensal bacteria elicits heterologous antigen-specific immune responses during pharyngeal carriage[J]. Sci Transl Med, 2021, 13: eabe8573. doi: 10.1126/scitranslmed.abe8573 [35] Taghinezhad SS, Keyvani H, Bermúdez-Humarán LG, et al. Twenty years of research on HPV vaccines based on genetically modified lactic acid bacteria: an overview on the gut-vagina axis[J]. Cell Mol Life Sci, 2021, 78: 1191-1206. doi: 10.1007/s00018-020-03652-2 [36] Lunken GR, Golding L, Schick A, et al. Gut microbiome and dietary fibre intake strongly associate with IgG function and maturation following SARS-CoV-2 mRNA vaccination[J]. Gut, 2022: gutjnl-2022-328556. doi: 10.1136/gutjnl-2022-328556 -

表(1)
计量
- 文章访问数: 1118
- HTML全文浏览量: 14
- PDF下载量: 42
- 被引次数: 0