留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

放射性药物联合免疫检查点抑制剂协同抗肿瘤研究新进展

曾馨莹 文雪君 郭志德 张现忠

曾馨莹, 文雪君, 郭志德, 张现忠. 放射性药物联合免疫检查点抑制剂协同抗肿瘤研究新进展[J]. 协和医学杂志. doi: 10.12290/xhyxzz.2023-0159
引用本文: 曾馨莹, 文雪君, 郭志德, 张现忠. 放射性药物联合免疫检查点抑制剂协同抗肿瘤研究新进展[J]. 协和医学杂志. doi: 10.12290/xhyxzz.2023-0159
ZENG Xinying, WEN Xuejun, GUO Zhide, ZHANG Xianzhong. Advances in Synergistic Antitumor Effects of Radiopharmaceuticals Combined with Immune Checkpoint Inhibitors[J]. Medical Journal of Peking Union Medical College Hospital. doi: 10.12290/xhyxzz.2023-0159
Citation: ZENG Xinying, WEN Xuejun, GUO Zhide, ZHANG Xianzhong. Advances in Synergistic Antitumor Effects of Radiopharmaceuticals Combined with Immune Checkpoint Inhibitors[J]. Medical Journal of Peking Union Medical College Hospital. doi: 10.12290/xhyxzz.2023-0159

放射性药物联合免疫检查点抑制剂协同抗肿瘤研究新进展

doi: 10.12290/xhyxzz.2023-0159
基金项目: 

国家自然科学基金(81901805,21976150,21906135)

详细信息
    通讯作者:

    郭志德,E-mail:gzd666888@xmu.edu.cn

    张现忠,E-mail:zhangxzh@hotmail.com

  • 中图分类号: R45;R73

Advances in Synergistic Antitumor Effects of Radiopharmaceuticals Combined with Immune Checkpoint Inhibitors

Funds: 

National Natural Science Foundation of China( 81901805,21976150,21906135)

  • 摘要: 靶向放射性核素治疗诱导DNA双链断裂,激活cGAS-STING通路、NF-kB/IRF3通路和STAT1/3-IRF1通路,上调程序性细胞死亡配体1 (programmed death ligand-1,PD-L1)的表达,促炎细胞因子、CD8+T细胞及CD4+T细胞在肿瘤中浸润增加,为免疫检查点抑制剂治疗提供了有利的免疫原性微环境。联合治疗使得正向调节免疫反应的记忆效应T细胞、M1型巨噬细胞及树突状细胞浸润增加,免疫抑制性的调节性T细胞、M2型巨噬细胞及髓源性抑制细胞下调,部分小鼠肿瘤完全缓解并产生免疫记忆。值得注意的是,放射性诊断药物2-[18F]FDG联合PD-L1抗体治疗也可调控免疫微环境,显著提高疗效。本文主要综述目前典型的放射性药物联合免疫检查点抑制剂协同抗肿瘤治疗策略,并强调联合治疗时间窗以及不同的治疗组合可能改善治疗效果,提出诊断放射性药物联合免疫治疗有望成为一种新的肿瘤治疗范式,或将成为未来研究的重要方向。
  • [1] FDA approves anti-LAG3 checkpoint[J]. Nat Biotechnol, 2022,40:625.
    [2] Yi M, Zheng X, Niu M, et al. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions[J]. Mol Cancer, 2022,21:28.
    [3] de Miguel M,Calvo E. Clinical Challenges of Immune Checkpoint Inhibitors[J]. Cancer Cell, 2020,38:326-333.
    [4] Fradet Y, Bellmunt J, Vaughn DJ, et al. Randomized phase III KEYNOTE-045 trial of pembrolizumab versus paclitaxel, docetaxel, or vinflunine in recurrent advanced urothelial cancer: results of >2 years of follow-up[J]. Ann Oncol, 2019,30:970-976.
    [5] McLaughlin M, Patin EC, Pedersen M, et al. Inflammatory microenvironment remodelling by tumour cells after radiotherapy[J]. Nat Rev Cancer, 2020,20:203-217.
    [6] Pouget JP, Lozza C, Deshayes E, et al. Introduction to radiobiology of targeted radionuclide therapy[J]. Front Med (Lausanne), 2015,2:12.
    [7] Deng L, Liang H, Xu M, et al. STING-Dependent Cytosolic DNA Sensing Promotes Radiation-Induced Type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors[J]. Immunity, 2014,41:843-852.
    [8] Zhang X, Zhang H, Zhang J, et al. The paradoxical role of radiation-induced cGAS-STING signalling network in tumour immunity[J]. Immunology, 2023,168:375-388.
    [9] Lan Y, Moustafa M, Knoll M, et al. Simultaneous targeting of TGF-beta/PD-L1 synergizes with radiotherapy by reprogramming the tumor microenvironment to overcome immune evasion[J]. Cancer Cell, 2021,39:1388-403. e10.
    [10] Sha CM, Lehrer EJ, Hwang C, et al. Toxicity in combination immune checkpoint inhibitor and radiation therapy: A systematic review and meta-analysis[J]. Radiother Oncol, 2020,151:141-148.
    [11] Procureur A, Simonaggio A, Bibault JE, et al. Enhance the Immune Checkpoint Inhibitors Efficacy with Radiotherapy Induced Immunogenic Cell Death: A Comprehensive Review and Latest Developments[J]. Cancers (Basel), 2021,13:678.
    [12] Twyman-Saint Victor C, Rech AJ, Maity A, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer[J]. Nature, 2015,520:373-377.
    [13] Formenti SC,Demaria S. Systemic effects of local radiotherapy[J]. Lancet Oncol, 2009,10:718-726.
    [14] Formenti SC, Rudqvist NP, Golden E, et al. Radiotherapy induces responses of lung cancer to CTLA-4 blockade[J]. Nat Med, 2018,24:1845- 1851.
    [15] Kleinendorst SC, Oosterwijk E, Bussink J, et al. Combining Targeted Radionuclide Therapy and Immune Checkpoint Inhibition for Cancer Treatment[J]. Clin Cancer Res, 2022,28:3652-3657.
    [16] Sun Q, Li J, Ding Z, et al. Radiopharmaceuticals heat anti-tumor immunity[J]. Theranostics, 2023,13:767-786.
    [17] Rouanet J, Benboubker V, Akil H, et al. Immune checkpoint inhibitors reverse tolerogenic mechanisms induced by melanoma targeted radionuclide therapy[J]. Cancer Immunol Immunother, 2020,69:2075-2088.
    [18] Jagodinsky JC, Jin W J, Bates AM, et al. Temporal analysis of type 1 interferon activation in tumor cells following external beam radiotherapy or targeted radionuclide therapy[J]. Theranostics, 2021,11:6120-6137.
    [19] Patel RB, Hernandez R, Carlson P, et al. Low-dose targeted radionuclide therapy renders immunologically cold tumors responsive to immune checkpoint blockade[J]. Sci Transl Med, 2021,13:eabb3631.
    [20] Grzmil M, Boersema P, Sharma A, et al. Comparative analysis of cancer cell responses to targeted radionuclide therapy (TRT) and external beam radiotherapy (EBRT)[J]. J Hematol Oncol, 2022,15:123.
    [21] Zhang J, Yang M, Fan X, et al. Biomimetic radiosensitizers unlock radiogenetics for local interstitial radiotherapy to activate systematic immune responses and resist tumor metastasis[J]. J Nanobiotechnology, 2022,20:103.
    [22] Brown R, Hernandez R, Grudzinski JJ, et al. Ability of Molecular Targeted Radionucleotide Therapy and Anti-CTLA-4 to Prevent Spontaneous Metastases in a Preclinical Lewis Lung Carcinoma Model[J]. International Journal of Radiation Oncology Biology Physics, 2019,105:E498-E499.
    [23] Potluri HK, Ferreira CA, Grudzinski J, et al. Antitumor efficacy of (90)Y-NM600 targeted radionuclide therapy and PD-1 blockade is limited by regulatory T cells in murine prostate tumors[J]. J Immunother Cancer, 2022,10:e005060.
    [24] Lutetium Lu 177 Dotatate Approved by FDA[J]. Cancer Discov, 2018,8:OF2.
    [25] Fallah J, Agrawal S, Gittleman H, et al. FDA Approval Summary: lutetium Lu 177 vipivotide tetraxetan for patients with metastatic castrationresistant prostate cancer[J]. Clin Cancer Res, 2023,29:1651-1657.
    [26] Kim C, Liu SV, Subramaniam DS, et al. Phase I study of the (177)Lu-DOTA(0)-Tyr(3)-Octreotate (lutathera) in combination with nivolumab in patients with neuroendocrine tumors of the lung[J]. J Immunother Cancer, 2020,8:e000980.
    [27] Ferdinandus J, Fendler WP, Lueckerath K, et al. Response to Combined Peptide Receptor Radionuclide Therapy and Checkpoint Immunotherapy with Ipilimumab Plus Nivolumab in Metastatic Merkel Cell Carcinoma[J]. J Nucl Med, 2022,63:396-398.
    [28] Lin AL, Tabar V, Young RJ, et al. Synergism of Checkpoint Inhibitors and Peptide Receptor Radionuclide Therapy in the Treatment of Pituitary Carcinoma[J]. J Endocr Soc, 2021,5:bvab133.
    [29] Prasad V, Zengerling F, Steinacker JP, et al. First Experiences with (177)Lu-PSMA Therapy in Combination with Pembrolizumab or After Pretreatment with Olaparib in Single Patients[J]. J Nucl Med, 2021,62:975-978.
    [30] Chen H, Zhao L, Fu K, et al. Integrin alpha(v)beta(3)-targeted radionuclide therapy combined with immune checkpoint blockade immunotherapy synergistically enhances anti-tumor efficacy[J]. Theranostics, 2019,9:7948-7960.
    [31] Wen XJ, Zeng XY, Shi CR, et al. Optimum Combination of Radiopharmaceuticals-Based Targeting-Triggering-Therapy Effect and PD-L1 Blockade Immunotherapy[J]. Advanced Therapeutics, 2022,6:2200193.
    [32] Wen X, Zeng X, Liu J, et al. Synergism of (64)Cu-Labeled RGD with Anti-PD-L1 Immunotherapy for the Long-Acting Antitumor Effect[J]. Bioconjug Chem, 2022,33:2170-2179.
    [33] Guzik P, Siwowska K, Fang HY, et al. Promising potential of [(177)Lu]Lu-DOTA-folate to enhance tumor response to immunotherapy-a preclinical study using a syngeneic breast cancer model[J]. Eur J Nucl Med Mol Imaging, 2021,48:984-994.
    [34] Ren J, Xu M, Chen J, et al. PET imaging facilitates antibody screening for synergistic radioimmunotherapy with a (177)Lu-labeled alphaPDL1 antibody[J]. Theranostics, 2021,11:304-315.
    [35] Malo ME, Allen KJH, Jiao R, et al. Mechanistic Insights into Synergy between Melanin-Targeting Radioimmunotherapy and Immunotherapy in Experimental Melanoma[J]. Int J Mol Sci, 2020,21:8721.
    [36] Choi J, Beaino W, Fecek RJ, et al. Combined VLA-4-Targeted Radionuclide Therapy and Immunotherapy in a Mouse Model of Melanoma[J]. J Nucl Med, 2018,59:1843-1849.
    [37] Vito A, Rathmann S, Mercanti N, et al. Combined Radionuclide Therapy and Immunotherapy for Treatment of Triple Negative Breast Cancer[J]. Int J Mol Sci, 2021,22:4843.
    [38] Stap J, Krawczyk PM, Van Oven CH, et al. Induction of linear tracks of DNA double-strand breaks by alpha-particle irradiation of cells[J]. Nat Methods, 2008,5:261-266.
    [39] Czernin J, Current K, Mona CE, et al. Immune-Checkpoint Blockade Enhances (225)Ac-PSMA617 Efficacy in a Mouse Model of Prostate Cancer[J]. J Nucl Med, 2021,62:228-231.
    [40] Josefsson A, Nedrow JR, Park S, et al. Combining alpha-particle radiopharmaceutical therapy using Actinium-225 and immunotherapy with anti-PD-L1 antibodies in a murine immunocompetent metastatic breast cancer model[J]. Cancer Res, 2016,76:3052.
    [41] Dabagian H, Taghvaee T, Martorano P, et al. PARP Targeted Alpha-Particle Therapy Enhances Response to PD-1 Immune-Checkpoint Blockade in a Syngeneic Mouse Model of Glioblastoma[J]. ACS Pharmacol Transl Sci, 2021,4:344-351.
    [42] Zhang J, Li F, Yin Y, et al. Alpha radionuclide-chelated radioimmunotherapy promoters enable local radiotherapy/chemodynamic therapy to discourage cancer progression[J]. Biomater Res, 2022,26:44.
    [43] Malamas AS, Gameiro SR, Knudson KM, et al. Sublethal exposure to alpha radiation (223Ra dichloride) enhances various carcinomas' sensitivity to lysis by antigen-specific cytotoxic T lymphocytes through calreticulin-mediated immunogenic modulation[J]. Oncotarget, 2016,7:86937-86947.
    [44] Creemers JHA, van der Doelen MJ, van Wilpe S, et al. Immunophenotyping Reveals Longitudinal Changes in Circulating Immune Cells During Radium-223 Therapy in Patients With Metastatic Castration-Resistant Prostate Cancer[J]. Front Oncol, 2021,11:667658.
    [45] Vardaki I, Corn P, Gentile E, et al. Radium-223 Treatment Increases Immune Checkpoint Expression in Extracellular Vesicles from the Metastatic Prostate Cancer Bone Microenvironment[J]. Clin Cancer Res, 2021,27:3253-3264.
    [46] Fong L, Morris MJ, Sartor O, et al. A Phase Ib Study of Atezolizumab with Radium-223 Dichloride in Men with Metastatic CastrationResistant Prostate Cancer[J]. Clin Cancer Res, 2021,27:4746-4756.
    [47] Li M, Liu D, Lee D, et al. Targeted Alpha-Particle Radiotherapy and Immune Checkpoint Inhibitors Induces Cooperative Inhibition on Tumor Growth of Malignant Melanoma[J]. Cancers (Basel), 2021,13:3676.
    [48] Nosanchuk J D, Jeyakumar A, Ray A, et al. Structure-function analysis and therapeutic efficacy of antibodies to fungal melanin for melanoma radioimmunotherapy[J]. Sci Rep, 2018,8:5466.
    [49] Perrin J, Capitao M, Allard M, et al. Targeted Alpha Particle Therapy Remodels the Tumor Microenvironment and Improves Efficacy of Immunotherapy[J]. Int J Radiat Oncol Biol Phys, 2022,112:790-801.
    [50] Gorin JB, Menager J, Gouard S, et al. Antitumor immunity induced after alpha irradiation[J]. Neoplasia, 2014,16:319-328.
    [51] Lejeune P, Cruciani V, Berg-Larsen A, et al. Immunostimulatory effects of targeted thorium-227 conjugates as single agent and in combination with anti-PD-L1 therapy[J]. J Immunother Cancer, 2021,9:e002387.
    [52] Hagemann UB, Ellingsen C, Schuhmacher J, et al. Mesothelin-Targeted Thorium-227 Conjugate (MSLN-TTC): Preclinical Evaluation of a New Targeted Alpha Therapy for Mesothelin-Positive Cancers[J]. Clin Cancer Res, 2019,25:4723-4734.
    [53] Moadel RM, Nguyen AV, Lin EY, et al. Positron emission tomography agent 2-deoxy-2-[18F]fluoro-D-glucose has a therapeutic potential in breast cancer[J]. Breast Cancer Res, 2003,5:R199-R205.
    [54] Moadel RM, Weldon RH, Katz EB, et al. Positherapy: targeted nuclear therapy of breast cancer with 18F-2-deoxy-2-fluoro-D-glucose[J]. Cancer Research, 2005,65:698-702.
    [55] Fang S, Wang J, Jiang H, et al. Experimental study on the therapeutic effect of positron emission tomography agent [(1)(8)F]-labeled 2-deoxy- 2-fluoro-d-glucose in a colon cancer mouse model[J]. Cancer Biother Radiopharm, 2010,25:733-740.
    [56] Wen X, Shi C, Zeng X, et al. A Paradigm of Cancer Immunotherapy Based on 2-[18F]FDG and Anti-PD-L1 mAb Combination to Enhance the Antitumor Effect[J]. Clin Cancer Res, 2022,28:2923-2937.
    [57] 文雪君, 周吴昊, 郭志德, 等. 整合素aVb3靶向放射性药物99mTc-RGD联合抗PD-L1肿瘤免疫治疗增强抗肿瘤效果的研究[J]. 协和医学杂志, 2023, 14

    : - .
    [58] Wen X, Zeng X, Cheng X, et al. PD-L1-Targeted Radionuclide Therapy Combined with alphaPD-L1 Antibody Immunotherapy Synergistically Improves the Antitumor Effect[J]. Mol Pharm, 2022,19:3612-3622.
    [59] Gutfilen B, Souza SA,Valentini G. Copper-64: a real theranostic agent[J]. Drug Des Devel Ther, 2018,12:3235-3245.
  • 加载中
计量
  • 文章访问数:  23
  • HTML全文浏览量:  0
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-29
  • 网络出版日期:  2023-05-20

目录

    /

    返回文章
    返回

    【温馨提醒】近日,《协和医学杂志》编辑部接到作者反映,有多名不法人员冒充期刊编辑发送见刊通知,鼓动作者添加微信,从而骗取版面费的行为。特提醒您,本刊与作者联系的方式均为邮件通知或电话,稿件进度通知邮箱为:mjpumch@126.com,编辑部电话为:010-69154261,请提高警惕,谨防上当受骗!如有任何疑问,请致电编辑部核实。谢谢!