留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Omicron变异株病毒学特征: 关键突变、致病性、免疫逃逸

陈玉清 李金明

陈玉清, 李金明. Omicron变异株病毒学特征: 关键突变、致病性、免疫逃逸[J]. 协和医学杂志, 2023, 14(5): 945-952. doi: 10.12290/xhyxzz.2023-0139
引用本文: 陈玉清, 李金明. Omicron变异株病毒学特征: 关键突变、致病性、免疫逃逸[J]. 协和医学杂志, 2023, 14(5): 945-952. doi: 10.12290/xhyxzz.2023-0139
CHEN Yuqing, LI Jinming. Virological Characteristics of the Omicron Variant: Key Mutations, Pathogenicity, and Immune Escape[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(5): 945-952. doi: 10.12290/xhyxzz.2023-0139
Citation: CHEN Yuqing, LI Jinming. Virological Characteristics of the Omicron Variant: Key Mutations, Pathogenicity, and Immune Escape[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(5): 945-952. doi: 10.12290/xhyxzz.2023-0139

Omicron变异株病毒学特征: 关键突变、致病性、免疫逃逸

doi: 10.12290/xhyxzz.2023-0139
详细信息
    通讯作者:

    李金明,E-mail:jmli@nccl.org.cn

  • 中图分类号: R446.5;R51

Virological Characteristics of the Omicron Variant: Key Mutations, Pathogenicity, and Immune Escape

More Information
  • 摘要: 新型冠状病毒(severe acute respiratory syndrome coronavirus 2, SARS-CoV-2) Omicron变异株首次在博茨瓦纳被检出, 随后造成了全世界范围内的感染人数激增。截至目前, Omicron是需要关注的SARS-CoV-2变异株中突变数量最多的毒株, 已在整个基因组中发生至少50次突变。Omicron基因组发生的突变赋予病毒一定的适应性优势, 如受体结合域与人类血管紧张素转换酶2受体亲和力增强导致病毒传播能力增强; 与先前变异株相比, 病毒复制能力减弱导致在COVID-19患者中引起的症状相对较轻。此外, 该变异株具有较高的环境稳定性, 部分逃脱了来自疫苗接种或先前感染诱导的宿主免疫反应, 且对大多数治疗性抗体具有较高的耐药性。本文对Omicron变异株的关键突变、病毒学特征、致病性和免疫逃逸能力进行总结, 以期为完善疫情防控策略和公共卫生举措提供科学参考。
    作者贡献:陈玉清负责资料收集和论文撰写;李金明负责选题设计并审阅定稿。
    利益冲突:所有作者均声明不存在利益冲突
  • [1] World Health Organization. WHO Coronavirus (COVID-19) Dashboard With Vaccination Data[EB/OL].(2023-05-03)[2023-05-05]. https://covid19.who.int/?gclid=CjwKCAiAlNf-.
    [2] World Health Organization. Tracking SARS-CoV-2 variants[EB/OL].(2023-04-27)[2023-05-05]. https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/.
    [3] Vaughan A. Omicron emerges[J]. New Sci, 2021, 252: 7.
    [4] Carabelli AM, Peacock TP, Thorne LG, et al. SARS-CoV-2 variant biology: immune escape, transmission and fitness[J]. Nat Rev Microbiol, 2023, 21: 162-177.
    [5] Hirose R, Itoh Y, Ikegaya H, et al. Differences in environmental stability among SARS-CoV-2 variants of concern: Both Omicron BA. 1 and BA. 2 have higher stability[J]. Clin Microbiol Infect, 2022, 28: 1486-1491. doi:  10.1016/j.cmi.2022.05.020
    [6] Hu J, Peng P, Cao X, et al. Increased immune escape of the new SARS-CoV-2 variant of concern Omicron[J]. Cell Mol Immunol, 2022, 19: 293-295. doi:  10.1038/s41423-021-00836-z
    [7] Karim SSA, Karim QA. Omicron SARS-CoV-2 variant: a new chapter in the COVID-19 pandemic[J]. Lancet, 2021, 398: 2126-2128. doi:  10.1016/S0140-6736(21)02758-6
    [8] Pastorio C, Zech F, Noettger S. Determinants of spike infectivity, processing and neutralization in SARS-CoV-2 Omicron subvariants BA. 1 and BA. 2[J]. Cell Host Microbe, 2022, 30: 1255-1268. doi:  10.1016/j.chom.2022.07.006
    [9] Chen J, Qiu Y, Wang R, et al. Persistent Laplacian projected Omicron BA. 4 and BA. 5 to become new dominating variants[J]. Comput Biol Med, 2022, 151: 106262. doi:  10.1016/j.compbiomed.2022.106262
    [10] Hu B, Guo H, Zhou P, et al. Characteristics of SARS-CoV-2 and COVID-19[J]. Nat Rev Microbiol, 2021, 19: 141-154. doi:  10.1038/s41579-020-00459-7
    [11] Tian D, Sun Y, Xu H, et al. The emergence and epidemic characteristics of the highly mutated SARS-CoV-2 Omicron variant[J]. J Med Virol, 2022, 94: 2376-2383. doi:  10.1002/jmv.27643
    [12] Dejnirattisai W, Huo J, Zhou D, et al. SARS-CoV-2 Omicron-B. 1.1.529 leads to widespread escape from neutralizing antibody responses[J]. Cell, 2022, 185: 467-484. e15. doi:  10.1016/j.cell.2021.12.046
    [13] Chen J, Wang R, Gilby NB, et al. Omicron variant (B. 1.1.529): infectivity, vaccine breakthrough, and antibody resistance[J]. J Chem Inf Model, 2022, 62: 412-422. doi:  10.1021/acs.jcim.1c01451
    [14] Chan YA, Zhan SH. The emergence of the spike furin cleavage site in SARS-CoV-2[J]. Mol Biol Evol, 2022, 39: msab327. doi:  10.1093/molbev/msab327
    [15] Planas D, Bruel T, Grzelak L, et al. Sensitivity of infectious SARS-CoV-2 B. 1.1.7 and B. 1.351 variants to neutralizing antibodies[J]. Nat Med, 2021, 27: 917-924. doi:  10.1038/s41591-021-01318-5
    [16] Wang Q, Ye SB, Zhou ZJ, et al. Key mutations in the spike protein of SARS-CoV-2 affecting neutralization resistance and viral internalization[J]. J Med Virol, 2023, 95: e28407. doi:  10.1002/jmv.28407
    [17] Cox MG, Peacock TP, Harvey WT, et al. SARS-CoV-2 variant evasion of monoclonal antibodies based on in vitro studies[J]. Nat Rev Microbiol, 2023, 21: 112-124. doi:  10.1038/s41579-022-00809-7
    [18] Li Q, Nie J, Wu J, et al. SARS-CoV-2 501Y. V2 variants lack higher infectivity but do have immune escape[J]. Cell, 2021, 184: 2362-2371. e9. doi:  10.1016/j.cell.2021.02.042
    [19] Yu J, Collier AY, Rowe M, et al. Neutralization of the SARS-CoV-2 Omicron BA. 1 and BA. 2 variants[J]. N Engl J Med, 2022, 386: 1579-1580. doi:  10.1056/NEJMc2201849
    [20] Rodino KG, Peaper DR, Kelly BJ, et al. Partial ORF1ab gene target failure with Omicron BA. 2.12.1[J]. J Clin Microbiol, 2022, 60: e00600-22.
    [21] Cao Y, Yisimayi A, Jian F, et al. BA. 2.12.1, BA. 4 and BA. 5 escape antibodies elicited by Omicron infection[J]. Nature, 2022, 608: 593-602. doi:  10.1038/s41586-022-04980-y
    [22] Liu C, Lu J, Li P, et al. A Comparative study on epidemiological characteristics, transmissibility, and pathogenicity of three COVID-19 outbreaks caused by different variants[J]. Int J Infect Dis, 2023. doi:  10.1016/j.ijid.2023.01.039.
    [23] Kumar S, Karuppanan K, Subramaniam G. Omicron (BA. 1) and sub-variants (BA. 1.1, BA. 2, and BA. 3) of SARS-CoV-2 spike infectivity and pathogenicity: A comparative sequence and structural-based computational assess-ment[J]. J Med Virol, 2022, 94: 4780-4791. doi:  10.1002/jmv.27927
    [24] Fantini J, Yahi N, Colson P, et al. The puzzling mutational landscape of the SARS-CoV-2-variant Omicron[J]. J Med Virol, 2022, 94: 2019-2025. doi:  10.1002/jmv.27577
    [25] Fantini J, Yahi N, Azzaz F, et al. Structural dynamics of SARS-CoV-2 variants: A health monitoring strategy for anticipating COVID-19 outbreaks[J]. J Infect, 2021, 83: 197-206. doi:  10.1016/j.jinf.2021.06.001
    [26] Wang Q, Guo Y, Iketani S, et al. Antibody evasion by SARS-CoV-2 Omicron subvariants BA. 2.12.1, BA. 4 and BA. 5[J]. Nature, 2022, 608: 603-608. doi:  10.1038/s41586-022-05053-w
    [27] Benvenuto D, Angeletti S, Giovanetti M, et al. Evolutionary analysis of SARS-CoV-2: how mutation of Non-Structural Protein 6 (NSP6) could affect viral autophagy[J]. J Infect, 2020, 81: e24-e27.
    [28] Goldswain H, Dong X, Penrice-Randal R, et al. The P323L substitution in the SARS-CoV-2 polymerase (NSP12) confers a selective advantage during infection[J]. Genome Biol, 2023, 24: 47. doi:  10.1186/s13059-023-02881-5
    [29] Wu H, Xing N, Meng K, et al. Nucleocapsid mutations R203K/G204R increase the infectivity, fitness, and virulence of SARS-CoV-2[J]. Cell Host Microbe, 2021, 29: 1788-1801. e6. doi:  10.1016/j.chom.2021.11.005
    [30] Garcia-Beltran WF, Denis KJS, Hoelzemer A, et al. mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant[J]. Cell, 2022, 185: 457-466. e4. doi:  10.1016/j.cell.2021.12.033
    [31] Zhao H, Lu L, Peng Z, et al. SARS-CoV-2 Omicron variant shows less efficient replication and fusion activity when compared with Delta variant in TMPRSS2-expressed cells[J]. Emerg Microbes Infect, 2022, 11: 277-283. doi:  10.1080/22221751.2021.2023329
    [32] Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor[J]. Cell, 2020, 181: 271-280. e8. doi:  10.1016/j.cell.2020.02.052
    [33] Suzuki R, Yamasoba D, Kimura I, et al. Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant[J]. Nature, 2022, 603: 700-705. doi:  10.1038/s41586-022-04462-1
    [34] Shuai H, Chan JFW, Hu B, et al. Attenuated replication and pathogenicity of SARS-CoV-2 B. 1.1.529 Omicron[J]. Nature, 2022, 603: 693-699. doi:  10.1038/s41586-022-04442-5
    [35] Yamasoba D, Kimura I, Nasser H, et al. Virological characteristics of the SARS-CoV-2 Omicron BA. 2 spike[J]. Cell, 2022, 185: 2103-2115. e19. doi:  10.1016/j.cell.2022.04.035
    [36] Ito K, Piantham C, Nishiura H. Estimating relative generation times and relative reproduction numbers of Omicron BA. 1 and BA. 2 with respect to Delta in Denmark[J]. Math Biosci Eng, 2022, 19: 9005-9017. doi:  10.3934/mbe.2022418
    [37] Qassim SH, Chemaitelly H, Ayoub HH, et al. Effects of BA. 1/BA. 2 subvariant, vaccination and prior infection on infectiousness of SARS-CoV-2 omicron infections[J]. J Travel Med, 2022, 29: taac068. doi:  10.1093/jtm/taac068
    [38] Kimura I, Yamasoba D, Tamura T, et al. Virological characteristics of the SARS-CoV-2 Omicron BA. 2 subvariants, including BA. 4 and BA. 5[J]. Cell, 2022, 185: 3992-4007. e16. doi:  10.1016/j.cell.2022.09.018
    [39] Tegally H, Moir M, Everatt J, et al. Emergence of SARS-CoV-2 omicron lineages BA. 4 and BA. 5 in South Africa[J]. Nat Med, 2022, 28: 1785-1790. doi:  10.1038/s41591-022-01911-2
    [40] Nyberg T, Ferguson NM, Nash SG, et al. Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron(B. 1.1.529) and delta (B. 1.617.2) variants in England: a cohort study[J]. Lancet, 2022, 399: 1303-1312. doi:  10.1016/S0140-6736(22)00462-7
    [41] Bager P, Wohlfahrt J, Bhatt S, et al. Risk of hospitalisation associated with infection with SARS-CoV-2 omicron variant versus delta variant in Denmark: an observational cohort study[J]. Lancet Infect Dis, 2022, 22: 967-976. doi:  10.1016/S1473-3099(22)00154-2
    [42] Wolter N, Jassat W, Walaza S, et al. Early assessment of the clinical severity of the SARS-CoV-2 omicron variant in South Africa: a data linkage study[J]. Lancet, 2022, 399: 437-446. doi:  10.1016/S0140-6736(22)00017-4
    [43] Wang L, Berger NA, Kaelber DC, et al. Comparison of outcomes from COVID infection in pediatric and adult patients before and after the emergence of Omicron[J]. medRxiv[Preprint]. 2022. doi:  10.1101/2021.12.30.21268495.
    [44] Espenhain L, Funk T, Overvad M, et al. Epidemiological characterisation of the first 785 SARS-CoV-2 Omicron variant cases in Denmark, December 2021[J]. Euro Surveill, 2021, 26: 2101146.
    [45] Goga A, Bekker LG, Garrett N, et al. Breakthrough SARS-CoV-2 infections during periods of delta and omicron predominance, South Africa[J]. Lancet, 2022, 400: 269-271. doi:  10.1016/S0140-6736(22)01190-4
    [46] Lewnard JA, Hong VX, Patel MM, et al. Clinical outcomes associated with SARS-CoV-2 Omicron (B. 1.1.529) variant and BA. 1/BA. 1.1 or BA. 2 subvariant infection in Southern California[J]. Nat Med, 2022, 28: 1933-1943. doi:  10.1038/s41591-022-01887-z
    [47] Davies MA, Morden E, Rosseau P, et al. Outcomes of laboratory-confirmed SARS-CoV-2 infection during resurgence driven by Omicron lineages BA. 4 and BA. 5 compared with previous waves in the Western Cape Province, South Africa[J]. Int J Infect Dis, 2022, 127: 63-68.
    [48] Hui KPY, Ho JCW, Cheung M, et al. SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo[J]. Nature, 2022, 603: 715-720. doi:  10.1038/s41586-022-04479-6
    [49] Halfmann PJ, Iida S, Iwatsuki-Horimoto K, et al. SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters[J]. Nature, 2022, 603: 687-692. doi:  10.1038/s41586-022-04441-6
    [50] Christie B. COVID-19: Early studies give hope omicron is milder than other variants[J]. BMJ, 2021, 375: n3144.
    [51] Zhou H, Tada T, Dcosta BM, et al. Neutralization of SARS-CoV-2 Omicron BA. 2 by Therapeutic Monoclonal Antibodies[J]. bioRxiv[Preprint], 2022 Feb 24: 2022.02.15.480166.
    [52] Nutalai R, Zhou D, Tuekprakhon A, et al. Potent cross-reactive antibodies following Omicron breakthrough in vaccinees[J]. Cell, 2022, 185: 2116-2131. e18. doi:  10.1016/j.cell.2022.05.014
    [53] Kurhade C, Zou J, Xia H, et al. Neutralization of Omicron BA. 1, BA. 2, and BA. 3 SARS-CoV-2 by 3 doses of BNT162b2 vaccine[J]. Nat Commun, 2022, 13: 3602. doi:  10.1038/s41467-022-30681-1
    [54] Ai J, Zhang H, Zhang Y, et al. Omicron variant showed lower neutralizing sensitivity than other SARS-CoV-2 variants to immune sera elicited by vaccines after boost[J]. Emerg Microbes Infect, 2022, 11: 337-343. doi:  10.1080/22221751.2021.2022440
    [55] Dupont L, Snell LB, Graham C, et al. Neutralizing antibody activity in convalescent sera from infection in humans with SARS-CoV-2 and variants of concern[J]. Nat Microbiol, 2021, 6: 1433-1442. doi:  10.1038/s41564-021-00974-0
    [56] Zou J, Kurhade C, Xia H, et al. Cross-neutralization of Omicron BA. 1 against BA. 2 and BA. 3 SARS-CoV-2[J]. Nat Commun, 2022, 13: 2956. doi:  10.1038/s41467-022-30580-5
    [57] Hachmann NP, Miller J, Collier AY, et al. Neutralization Escape by SARS-CoV-2 Omicron Subvariants BA. 2.12.1, BA. 4, and BA. 5[J]. N Engl J Med, 2022, 387: 86-88. doi:  10.1056/NEJMc2206576
    [58] Taylor PC, Adams AC, Hufford MM, et al. Neutralizing monoclonal antibodies for treatment of COVID-19[J]. Nat Rev Immunol, 2021, 21: 382-393. doi:  10.1038/s41577-021-00542-x
    [59] Ohashi H, Hishiki T, Akazawa D, et al. Different efficacies of neutralizing antibodies and antiviral drugs on SARS-CoV-2 Omicron subvariants, BA. 1 and BA. 2[J]. Antiviral Res, 2022, 205: 105372. doi:  10.1016/j.antiviral.2022.105372
    [60] Imai M, Ito M, Kiso M, et al. Efficacy of Antiviral Agents against Omicron Subvariants BQ. 1.1 and XBB[J]. N Engl J Med, 2023, 388: 89-91.
    [61] Davis-Gardner ME, Lai L, Wali B, et al. Neutralization against BA. 2.75.2, BQ. 1.1, and XBB from mRNA Bivalent Booster[J]. N Engl J Med, 2023, 388: 183-185. doi:  10.1056/NEJMc2214293
  • 加载中
计量
  • 文章访问数:  1290
  • HTML全文浏览量:  69
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-21
  • 录用日期:  2023-05-05
  • 网络出版日期:  2023-05-08
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回

    【温馨提醒】近日,《协和医学杂志》编辑部接到作者反映,有多名不法人员冒充期刊编辑发送见刊通知,鼓动作者添加微信,从而骗取版面费的行为。特提醒您,本刊与作者联系的方式均为邮件通知或电话,稿件进度通知邮箱为:mjpumch@126.com,编辑部电话为:010-69154261,请提高警惕,谨防上当受骗!如有任何疑问,请致电编辑部核实。谢谢!