-
摘要: 微RNA(microRNAs,miRNAs)可稳定存在于细胞、组织及血液中,参与多种疾病的病理过程,成为多种疾病诊断的潜在生物标志物。已有研究表明,其在各种慢性肝病所致的肝纤维化中发挥重要作用,可通过调节肝纤维化相关基因的表达,干预肝纤维化发展进程。本文就miRNA在肝纤维化中的作用机制作一综述,以期为肝纤维化的诊断及分子靶向治疗提供借鉴。Abstract: MicroRNAs(miRNAs) are involved in the pathophysiological processes of many diseases. Stably present in cells, tissues and blood, they can be used as potential markers of many diseases. They play an important role in the pathogenesis of liver fibrosis caused by various chronic liver diseases. It has been shown that miRNAs can participate in the process of liver fibrosis by targeting the down-regulation of liver fibrosis-related gene expression. In this review, we discuss the research progress on the role of miRNAs in liver fibrosis, with the hope of providing reference for diagnosis and molecularly targeted treatment.
-
Key words:
- liver fibrosis /
- microRNAs /
- therapeutic strategies /
- targeted delivery
作者贡献:黄璐、吴有斌、刘梦媛负责论文撰写;倪毅然负责论文构思;吴江锋、张艳琼负责论文修订。利益冲突:所有作者均声明不存在利益冲突 -
图 1 肝纤维化相关miRNAs作用靶点
TGF:转化生长因子;Gramlin:骨形态形成蛋白拮抗家族;LOX:赖氨酰氧化酶;Itga:整合素家族;Acot 4:酰基辅酶A硫酯酶4;Menin:MEN1基因的表达产物;COL:胶原蛋白;PDGFC:血小板衍生生长因子C;P4HA1:脯氨酰4-羟化酶亚基α-1;FN1:纤连蛋白1;c-Abl:非受体酪氨酸激酶Abelson超家族成员;SHIP1:含SH2结构域的肌醇5-磷酸酶;PPAR:过氧化物酶体增殖物激活受体;Twist:转录因子蛋白;ACSL:酰基辅酶A合成酶长链蛋白;SIRT1:NAD+依赖的蛋白去乙酰化酶;TGIF2:TGF-β诱导因子同源异构体2;CAV:小窝蛋白;CDKN:细胞周期蛋白依赖性激酶抑制剂;TIMP:组织基质金属蛋白酶抑制剂;PTEN:抑癌基因;E-cad:上皮细胞钙粘素
表 1 肝纤维化相关miRNAs
miRNAs 类别 染色体定位 种子序列 细胞类型 疾病模型 表达水平 miR-23[9, 46-47] 抗肝纤维化 19p13.12;
9q22.32UCACAUU;
UCACAGU;
GGCUCAGHSCs;肝细胞;
胆管上皮细胞CCl4引起的肝纤维化、NASH;硬化性胆管炎 CHC患者血清中下降 miR-29[12-14] 抗肝纤维化 7q32.3;
1q32.2AGCACCA HSCs; CCl4等多种肝纤维化模型 CHC患者血清中上升,与肝纤维化程度呈正相关 miR-122[17-24] 抗肝纤维化 18q21.31 GGAGUGU 肝细胞;HSCs NAFLD CHC患者血清中上升,与肝纤维化程度呈正相关 miR-34[24-29, 48-51] 促肝纤维化 1p36.22;
11q23.1GGCAGUG HSCs;肝细胞;
胆管上皮细胞CCl4等多种肝纤维化模型;原发性胆管炎;NASH CHC患者血清中上升,与肝纤维化程度呈正相关 miR-199[30-32] 促肝纤维化 19p13.2;
1q24.3;
9q34.11CCAGUGU;
CAGUAGUHSCs CCl4等多种肝纤维化模型 CHC患者血清中上升,与肝纤维化程度呈正相关 miR-221/222[34-40] 促肝纤维化 Xp11.3 GCUACAU HSCs;肝细胞;
巨噬细胞CCl4等多种肝纤维化模型 多种肝纤维化模型组织表达上升 miR-155[41-45] 双向作用 21q21.3 UAAUGCU 巨噬细胞;淋巴细
胞;HSCs;肝细胞酒精性脂肪性肝炎和多种肝纤维化模型; 血清中上升,与肝纤维化程度呈正相关 HSCs:肝星状细胞;CCl4: 四氯化碳;NASH:非酒精性脂肪性肝炎;CHC:慢性丙型肝炎;NAFLD:非酒精性脂肪性肝病;AGTR:血管紧张素Ⅱ受体;TCF4:T细胞因子4 -
[1] Wang H, Wang Z, Wang Y, et al. miRNA-130b-5p promotes hepatic stellate cell activation and the development of liver fibrosis by suppressing SIRT4 expression[J]. J Cell Mol Med, 2021, 25: 7381-7394. doi: 10.1111/jcmm.16766 [2] Szabo G, Bala S. MicroRNAs in liver disease[J]. Nat Rev Gastroenterol Hepatol, 2013, 10: 542-552. doi: 10.1038/nrgastro.2013.87 [3] Bhaskaran M, Mohan M. MicroRNAs: history, biogenesis, and their evolving role in animal development and disease[J]. Vet Pathol, 2014, 51: 759-774. doi: 10.1177/0300985813502820 [4] Michlewski G, Caceres JF. Post-transcriptional control of miRNA biogenesis[J]. RNA, 2019, 25: 1-16. doi: 10.1261/rna.068692.118 [5] Li M, Yu B, Recent advances in the regulation of plant miRNA biogenesis[J]. RNA Biol, 2021, 18: 2087-2096. doi: 10.1080/15476286.2021.1899491 [6] Suzuki HI, Young RA, Sharp PA. Super-Enhancer-Mediated RNA Processing Revealed by Integrative MicroRNA Network Analysis[J]. Cell, 2017, 168: 1000-1014. doi: 10.1016/j.cell.2017.02.015 [7] Nguyen TA, Park J, Dang TL, et al. Microprocessor depends on hemin to recognize the apical loop of primary microRNA[J]. Nucleic Acids Res, 2018, 46: 5726-5736. doi: 10.1093/nar/gky248 [8] Alarcon CR, Lee H, Goodarzi H, et al. N6-methyl-adenosine marks primary microRNAs for processing[J]. Nature, 2015, 519: 482-485. doi: 10.1038/nature14281 [9] Li H, Li X, Yu S, et al. miR-23b Ameliorates nonalco-holic steatohepatitis by targeting Acyl-CoA thioesterases 4[J]. Exp Cell Res, 2021, 407: 112787. doi: 10.1016/j.yexcr.2021.112787 [10] El-Hefny M, Fouad S, Hussein T, et al. Circulating microRNAs as predictive biomarkers for liver disease progres-sion of chronic hepatitis C (genotype-4) Egyptian patients[J]. J Med Virol, 2019, 91: 93-101. doi: 10.1002/jmv.25294 [11] Agarwal V, Bell GW, Nam JW, et al. Predicting effective microRNA target sites in mammalian mRNAs[J]. Elife, 2015, 4: e05005. doi: 10.7554/eLife.05005 [12] Roderburg C, Urban GW, Bettermann K, et al. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis[J]. Hepatology, 2011, 53: 209-218. doi: 10.1002/hep.23922 [13] Yu X, Elfimova N, Muller M, et al. Autophagy-Related Activation of Hepatic Stellate Cells Reduces Cellular miR-29a by Promoting Its Vesicular Secretion[J]. Cell Mol Gastroenterol Hepatol, 2022, 13: 1701-1716. doi: 10.1016/j.jcmgh.2022.02.013 [14] Matsumoto Y, Itami S, Kuroda M, et al. MiR-29a Assists in Preventing the Activation of Human Stellate Cells and Promotes Recovery From Liver Fibrosis in Mice[J]. Mol Ther, 2016, 24: 1848-1859. doi: 10.1038/mt.2016.127 [15] Girard M, Jacquemin E, Munnich A, et al. miR-122, a paradigm for the role of microRNAs in the liver[J]. J Hepatol, 2008, 48: 648-656. doi: 10.1016/j.jhep.2008.01.019 [16] Sendi H, Mead I, Wan M, et al. miR-122 inhibition in a human liver organoid model leads to liver inflammation, necrosis, steatofibrosis and dysregulated insulin signaling[J]. PLoS One, 2018, 13: e200847. [17] Satishchandran A, Ambade A, Rao S, et al. MicroRNA 122, Regulated by GRLH2, Protects Livers of Mice and Patients From Ethanol-Induced Liver Disease[J]. Gastroenterology, 2018, 154: 238-252. doi: 10.1053/j.gastro.2017.09.022 [18] Zeng C, Wang YL, Xie C, et al. Identification of a novel TGF-beta-miR-122-fibronectin 1/serum response factor signaling cascade and its implication in hepatic fibrogenesis[J]. Oncotarget, 2015, 6: 12224-12233. doi: 10.18632/oncotarget.3652 [19] Li J, Ghazwani M, Zhang Y, et al. miR-122 regulates collagen production via targeting hepatic stellate cells and suppressing P4HA1 expression[J]. J Hepatol, 2013, 58: 522-528. doi: 10.1016/j.jhep.2012.11.011 [20] Wu Z, Wang J, Feng J, et al. MicroRNA-122-5p prevents proliferation and promotes apoptosis of hepatic stellate cells by suppressing the cellular-Abelsongene/histone deacetylases 2 pathway[J]. Hum Exp Toxicol, 2022, 41: 774864384. [21] Omran AA, Osman KS, Kamel HM, et al. MicroRNA-122 as a Novel Non-Invasive Marker of Liver Fibrosis in Hepatitis C Virus Patients[J]. Clin Lab, 2016, 62: 1329-1337. [22] Lou G, Yang Y, Liu F, et al. MiR-122 modification enhances the therapeutic efficacy of adipose tissue-derived mesenchymal stem cells against liver fibrosis[J]. J Cell Mol Med, 2017, 21: 2963-2973. doi: 10.1111/jcmm.13208 [23] Kim K, Lee JI, Kim O, et al. Ameliorating liver fibrosis in an animal model using the secretome released from miR-122-transfected adipose-derived stem cells[J]. World J Stem Cells, 2019, 11: 990-1004. doi: 10.4252/wjsc.v11.i11.990 [24] Yan G, Li B, Xin X, et al. MicroRNA-34a Promotes Hepatic Stellate Cell Activation via Targeting ACSL1[J]. Med Sci Monit, 2015, 21: 3008-3015. doi: 10.12659/MSM.894000 [25] Li X, Chen Y, Wu S, et al. microRNA-34a and microRNA-34c promote the activation of human hepatic stellate cells by targeting peroxisome proliferator-activated receptor gamma[J]. Mol Med Rep, 2015, 11: 1017-1024. doi: 10.3892/mmr.2014.2846 [26] Song L, Chen TY, Zhao XJ, et al. Pterostilbene prevents hepatocyte epithelial-mesenchymal transition in fructose-induced liver fibrosis through suppressing miR-34a/Sirt1/p53 and TGF-beta1/Smads signalling[J]. Br J Pharmacol, 2019, 176: 1619-1634. doi: 10.1111/bph.14573 [27] Tian XF, Ji FJ, Zang HL, et al. Activation of the miR-34a/SIRT1/p53 Signaling Pathway Contributes to the Progress of Liver Fibrosis via Inducing Apoptosis in Hepatocytes but Not in HSCs[J]. PLoS One, 2016, 11: e158657. [28] Liu Q, Zhang Y, Yang S, et al. PU. 1-deficient mice are resistant to thioacetamide-induced hepatic fibrosis: PU. 1 finely regulates Sirt1 expression via transcriptional promotion of miR-34a and miR-29c in hepatic stellate cells[J]. Biosci Rep, 2017, 37: BSR20170926. doi: 10.1042/BSR20170926 [29] Li X, Zhang W, Xu K, et al. miR-34a promotes liver fibrosis in patients with chronic hepatitis via mediating Sirt1/p53 signaling pathway[J]. Pathol Res Pract, 2020, 216: 152876. doi: 10.1016/j.prp.2020.152876 [30] Messner CJ, Schmidt S, Ozkul D, et al. Identification of miR-199a-5p, miR-214-3p and miR-99b-5p as Fibrosis-Specific Extracellular Biomarkers and Promoters of HSC Activation[J]. Int J Mol Sci, 2021, 22: 9799. doi: 10.3390/ijms22189799 [31] Murakami Y, Toyoda H, Tanaka M, et al. The progression of liver fibrosis is related with overexpression of the miR-199 and 200 families[J]. PLoS One, 2011, 6: e16081. doi: 10.1371/journal.pone.0016081 [32] Lino CC, Henaoui IS, Courcot E, et al. miR-199a-5p Is upregulated during fibrogenic response to tissue injury and mediates TGFbeta-induced lung fibroblast activation by targeting caveolin-1[J]. PLoS Genet, 2013, 9: e1003291. doi: 10.1371/journal.pgen.1003291 [33] Yang X, Ma L, Wei R, et al. Twist1-induced miR-199a-3p promotes liver fibrosis by suppressing caveolin-2 and activating TGF-beta pathway[J]. Signal Transduct Target Ther, 2020, 5: 75. doi: 10.1038/s41392-020-0169-z [34] Pineau P, Volinia S, Mcjunkin K, et al. miR-221 overexpression contributes to liver tumorigenesis[J]. Proc Natl Acad Sci USA, 2010, 107: 264-269. doi: 10.1073/pnas.0907904107 [35] Ogawa T, Enomoto M, Fujii H, et al. MicroRNA-221/222 upregulation indicates the activation of stellate cells and the progression of liver fibrosis[J]. Gut, 2012, 61: 1600-1609. doi: 10.1136/gutjnl-2011-300717 [36] Galardi S, Mercatelli N, Farace M G, et al. NF-κB and c-Jun induce the expression of the oncogenic miR-221 and miR-222 in prostate carcinoma and glioblastoma cells[J]. Nucleic Acids Res, 2011, 39: 3892-3902. doi: 10.1093/nar/gkr006 [37] Sehgal M, Zeremski M, Talal AH, et al. IFN-alpha-Induced Downregulation of miR-221 in Dendritic Cells: Implications for HCV Pathogenesis and Treatment[J]. J Interferon Cytokine Res, 2015, 35: 698-709. doi: 10.1089/jir.2014.0211 [38] Mafanda EK, Kandhi R, Bobbala D, et al. Essential role of suppressor of cytokine signaling 1 (SOCS1) in hepatocytes and macrophages in the regulation of liver fibrosis[J]. Cytokine, 2019, 124: 154501. doi: 10.1016/j.cyto.2018.07.032 [39] Jiang X, Jiang L, Shan A, et al. Targeting hepatic miR-221/222 for therapeutic intervention of nonalcoholic steatohepatitis in mice[J]. EBioMedicine, 2018, 37: 307-321. doi: 10.1016/j.ebiom.2018.09.051 [40] Markovic J, Sharma AD, Balakrishnan A. MicroRNA-221: A Fine Tuner and Potential Biomarker of Chronic Liver Injury[J]. Cells, 2020, 9: 1767. doi: 10.3390/cells9081767 [41] Blaya D, Aguilar-Bravo B, Hao F, et al. Expression of microRNA-155 in inflammatory cells modulates liver injury[J]. Hepatology, 2018, 68: 691-706. [42] Bala S, Csak T, Saha B, et al. The pro-inflammatory effects of miR-155 promote liver fibrosis and alcohol-induced steatohepatitis[J]. J Hepatol, 2016, 64: 1378-1387. [43] Bala S, Ganz M, Babuta M, et al. Steatosis, inflamma-some upregulation, and fibrosis are attenuated in miR-155 deficient mice in a high fat-cholesterol-sugar diet-induced model of NASH[J]. Lab Invest, 2021, 101: 1540-1549. doi: 10.1038/s41374-021-00626-1 [44] Dai W, Zhao J, Tang N, et al. MicroRNA-155 attenuates activation of hepatic stellate cell by simultaneously prevent-ing EMT process and ERK1 signalling pathway[J]. Liver Int, 2015, 35: 1234-1243. doi: 10.1111/liv.12660 [45] Niu LJ, Zhang YM, Huang T, et al. Exosomal microRNA-155 as a biomarker for hepatic fibrosis diagnosis and progression[J]. Ann Transl Med, 2021, 9: 137. doi: 10.21037/atm-20-7787 [46] Wang Y, Luo J, Zhang H, et al. microRNAs in the Same Clusters Evolve to Coordinately Regulate Functionally Related Genes[J]. Mol Biol Evol, 2016, 33: 2232-2247. doi: 10.1093/molbev/msw089 [47] Wan LY, Peng H, Ni YR, et al. The miR-23b/27b/24-1 Cluster Inhibits Hepatic Fibrosis by Inactivating Hepatic Stellate Cells[J]. Cell Mol Gastroenterol Hepatol, 2022, 13: 1393-1412. doi: 10.1016/j.jcmgh.2022.01.016 [48] Hong SW, Jung KH, Zheng HM, et al. The protective effect of resveratrol on dimethylnitrosamine-induced liver fibrosis in rats[J]. Arch Pharm Res, 2010, 33: 601-609. doi: 10.1007/s12272-010-0415-y [49] Pan Y, Wang J, He L, et al. MicroRNA-34a Promotes EMT and Liver Fibrosis in Primary Biliary Cholangitis by Regulating TGF-beta1/smad Pathway[J]. J Immunol Res, 2021, 2021: 6890423. [50] Harrison SA, Ratziu V, Boursier J, et al. A blood-based biomarker panel (NIS4) for non-invasive diagnosis of non-alcoholic steatohepatitis and liver fibrosis: a prospective derivation and global validation study[J]. Lancet Gastroenterol Hepatol, 2020, 5: 970-985. doi: 10.1016/S2468-1253(20)30252-1 [51] Hong DS, Kang YK, Borad M, et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours[J]. Br J Cancer, 2020, 122: 1630-1637. doi: 10.1038/s41416-020-0802-1 [52] 陆伦根, 尤红, 谢渭芬, 等. 肝纤维化诊断及治疗共识(2019年)[J]. 实用肝脏病杂志, 2019, 22: 793-803. https://www.cnki.com.cn/Article/CJFDTOTAL-GBSY201906006.htm [53] Hassan S, Syed S, Kehar SI. Review of diagnostic techniques of hepatic fibrosis[J]. J Pak Med Assoc, 2014, 64: 941-945. [54] Dana J, Venkatasamy A, Saviano A, et al. Conventional and artificial intelligence-based imaging for biomarker discovery in chronic liver disease[J]. Hepatol Int, 2022, 16: 509-522. doi: 10.1007/s12072-022-10303-0 [55] Khvorova A, Watts JK. The chemical evolution of oligonucleotide therapies of clinical utility[J]. Nat Biotechnol, 2017, 35: 238-248. doi: 10.1038/nbt.3765 [56] Yamamoto T, Mukai Y, Wada F, et al. Highly Potent GalNAc-Conjugated Tiny LNA Anti-miRNA-122 Antisense Oligonucleotides[J]. Pharmaceutics, 2021, 13: 817. doi: 10.3390/pharmaceutics13060817 -